纤维素酶系碱性条件下的选择性失活及应用
详细信息Selective denaturation of major enzymatic components in cellulase system by alkali treatment and its application
-
摘要: 里氏木霉产纤维素酶系中的内切葡聚糖酶(CMCase)、纤维二糖水解酶(CBH)和β-葡萄糖苷酶三大酶类在碱性处理条件下会发生快速、选择性失活。在pH9.00和(25±1)℃的条件下静置处理纤维素酶液30min,CMCase和CBH酶组分主要发生可逆变性失活,而β-葡萄糖苷酶发生不可逆变性失活,它们的残余酶活力分别为58.8%、56.6%和5.7%,相对比例可达到10.3和9.9。通过碱性处理能够得到低β-葡萄糖苷酶活力的纤维素酶制剂,可以显著提高其定向酶水解纤维素制备纤维低聚糖的生产性能,并生成以纤维二糖为主包括少量纤维三糖的纤维低聚糖。以0.1%(v/v)碱处理纤维素酶定向水解10g/L纸浆24h,纤维低聚糖的酶解得率为6.73%,占总糖类的78.2%,比天然酶反应体系提高53.6%。Abstract: In the crude cellulase system of Trihcoderma reesei, three main enzyme groups involving endo-glucanase (CMCase) , cellobiohydrolase (CBH) and β-Glucosidase were rapidly and selectively denatured in the alkali circumstance. CMCase and CBH were inclined to reversible denaturation, different from the irreversible denaturation of β-Glucosidase as the crude cellulase was incubated statically in the alkali solution at pH9. 00 and (25±1) ℃ for 30min. The residual enzyme activity value of three enzyme groups were respectively remained 58. 8% of CMCase, 56. 6% of CBH and 5. 7% of β-Glucosidase, thus the relative ratio between CMCase or CBH and β-Glucosidase reached 10. 3 or 9. 9. Alkali treatment improved greatly, the cellulase selectivity and produced the glucosidase-poor cellulase to hydrolyze selectively cellulose into cellooligosaccharides containing mainly cellobiose and little cellotriose. The product yield of cellooligosaccharide could reach 6. 73% when 10g/L paper powder solution was hydrolyzed at the enzyme loading of 0. 1% (v/v) alkali treated cellulase for 24h. The oligosaccharides content accounted for 78. 2% of the total degraded saccharides which increased by 53. 6%, compared with the enzymatic hydrolysate with crude cellulase.
-
[1] Christian P K.Advances in biochemical engineering.bioteehnology[M].Managing Editor:Fieehter A (Springer-Verlag, Berlin Heidelberg) , 1992, 45:1-27.
[2] Zhang Y H P, Himmel M E, Mielenz J R.Outlook for cellulase improvement:screening and selection strategies[J].Biotechnology Advances, 2006, 24:452-481.
[3] Mathew G M, Sukumaran R K, Singhania R R, et al.Process in research on fungal cellulases for lignocellulose degradation[J].Journal of Scientific and Industrial Research, 2008, 67:898-907.
[4] Schulein M.Cellulases of Trichodema reesei, in methods in enzymology[M].Edited by Wood W A and Abelson J N (Academic Press, New York) , 1988, 160:234-242.
[5] Bhat M K.Cellulases and related enzymes in biotechnology[J].Biotechnology Advances, 2000, 18 (5) :355-383.
[6] Fort S, Boyer V, Greffe L.Highly efficient synthesis of beta (1-4) -oligo-and-polysaccharides using a mutant cellulase[J].Journal of the American Chemical Society, 2000, 122 (23) :5429-5437.
[7] Hirayma M.Novel physiological functions of oligosaccharids[J].Pure Applied Chemistry, 2002, 74 (7) :1271-1279.
[8] Peterson Robyn, Nevalainen Helena.Trichoderma reesei RUT-C30-thirty years of strain improvement[J].MIicrobiology SGM, 2012, 158:58-68.
[9] Levine Seth E, Fox Jerome M, Clark Douglas S.A mechanistic model for rational design of optimal cellulase mixtures[J].Biotechnology and Bioengineering, 2011, 108 (1) :2561-2570.
[10] Arnold F H, Wintrode P L, Miyazaki K, et al.How enzymesadapt:lessons from directed evolution[J].Trends in Biochemistry Science, 2001, 26:100-106.
[11] Arnold FH.Combinatorial and computational challenges for biocatalyst design[J].Nature, 2001, 409:253-257.
[12] Schulein M.Protein engineering of cellulase[J].Biochimica et Biophysica Acta, 2000, 1543:239-252.
[13] 李志和, 张丽, 李鑫, 等.培养基组成对里氏木霉合成纤维素酶的影响[J].林产化学与工业, 2011, 31 (3) :55-58. [14] Ghose T K.Measurement of cellulase activities[J].Pure andApplied Chemistry, 1987, 59 (2) :257-268.
[15] Miller J.Experiments in molecular genetics[M].New York Cold Spring Harbor Laboratory, 1972:352-355.
[16] Sluiter A, Hames B, Ruiz, et al.Laboratory technical report (NREL/TP-510-42618) .www.nrel.gov/biomass/pdfs/42618.pdf, 2008.
[17] 范丽, 徐勇, 连之娜, 等.高效离子交换色谱-脉冲安培检测法定量测定低聚木糖样品中的低聚木糖[J].色谱, 2011, 29 (1) :75-78.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: