食源性蛋白质自组装纤维的研究进展
详细信息Advance on self-assembly of food proteins into fibrils
-
摘要: 蛋白质自组装形成的纤维具有优异的尺寸效应和生物相容性,有望成为新一代功能性材料应用于食品工业。本文对食源性蛋白质自组装形成的纤维结构、形成机制、形成过程的监测方法及其构建的纳米纤维应用前景进行了综述,重点讨论了纤维的形成机制和形成过程的监测方法,为调控食源性蛋白质自组装纤维在食品中的应用及其在复杂食品蛋白质体系中的行为提供理论参考。Abstract: Self-assembly of food proteins into fibrils with meso-scale structure and biocompatibility have provided a possibility of utilization as novel functional ingredients in food. This review described the fibrillar structures, formation mechanism, the characterization process of fibril formation from food protein and applications for the fibrils. In this paper, the mechanism and analysis method of fibril formation was discussed so as to provide some scientific bases for control behavior in complex food protein and application in food industry.
-
[1] Benshitrit R C, Shimonia S, Lesmes U.Development of oral food-grade delivery systems current knowledge and future challenges[J].Food Funct, 2012 (3) :10-21.
[2] Drexler K E.Molecular engineering:An approach to the development of general capabilities for molecular manipulation[J].Proceeding of the National Academy of Sciences of the USA, 1981, 78 (9) :5275-5278.
[3] Pallarès I, Vendrell J, Avilès F X, et al.Amyloid fibril formation by a partially structured intermediate state ofα-chymotrypsin[J].Journal of Molecular Biology, 2004, 342 (1) :321-331.
[4] Mudgal P, Daubert C R, Foegeding E A.Kinetic study ofβ-Lactoglobulin thermal aggregation at low pH[J].Journal of Food Engineering, 2011, 106 (2) :159-165.
[5] Loveday S M, Wang X L, Rao M A, et al.β-Lactoglobulin nanofibrils:Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions[J].Food Hydrocolloids, 2012, 27 (1) :242-249.
[6] Loveday S M, Wang X L, Rao M A, et al.Effect of pH, NaCl, CaCl2and temperature on self-assembly ofβ-Lactoglobulin into nanofibrils:A central composite design study[J].Journal of Agricultural and Food Chemistry, 2011, 59 (15) :8467-8474.
[7] Oboroceanu D, Brodkorb A, Wang L, et al.Characterization of beta-Lactoglobulin fibrillar assembly using atomic force microscopy, polyacrylamide gel electrophoresis, and in situ fourier transform infrared spectroscopy[J].Journal of Agricultural and Food Chemistry, 2010, 58 (6) :3667-3673.
[8] Holm N K, Jespersen S K, Thomassen L V, et al.Aggegation and fibrillation of bovine serurn albumin[J].Biochimica et BioPhysica Acta (BBA) -Proteins&Proteomics, 2007, 1774 (9) :1128-1138.
[9] Reinke A A, Seh H Y, Gestwiceki J E.A chemical screening approach reveals that indole fluorescence is quenched by pre-fibrillar but not fibrillar amyloid-β[J].Bioorganic&Medicinal Chemistry Letters, 2009, 19 (17) :4952-4957.
[10] Wang Jinmei, Yang Xiaoquan, Yin Shouwei, et al.Growth kinetics of amyloid-like fibrils derived from individual subunits of soyβ-Conglycinin[J].Journal of Agricultural and Food Chemistry, 2011, 59 (20) :11270-11277.
[11] Tang Chuanhe, Wang Changsheng.Formation and characterization of amyloid-like fibrils from soyβ-Conglycinin and glycinin[J].Journal of Agricultural and Food Chemistry, 2010, 58 (20) :11058-11066.
[12] Zhang Yehui, Tang Chuanhe, Wen Qibiao, et al.Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L) protein isolate at pH2.0:Influence of ionic strength[J].Food Hydrocolloids, 2010, 24 (4) :266-274.
[13] Tang Chuanhe, Zhang Yehui, Wen Qibiao, et al.Formation of amyloid fibrils from kidney bean7S globulin (Phaseolin) at pH2.0[J].Journal of Agricultural and Food Chemistry, 2010, 58 (13) :8061-8068.
[14] Ardy K N.Formation and properties of whey protein fibrils[D].Wageningen:Wageningen University, 2011.
[15] Akkermans C, Venema P, Van Der Goot A J, et al.Peptides are building blocks of heat-induced fibrillar protein aggregates ofβ-lactoglobulin formed at pH2[J].Biomacromolecules, 2008, 9 (5) :1474-1479.
[16] Mudgal P, Daubert C R, Foegeding E A.Kinetic study ofβ-lactoglobulin thermal aggregation at low pH[J].Journal of Food Engineering, 2011, 106 (2) :159-165.
[17] Van Der Linden E, Venema P.Self-assembly and aggregation of proteins[J].Current Opinion in Colloid&Interface Science, 2007, 12 (4/5) :158-165.
[18] Loveday S M, Wang X L, Rao M A, et al.Tuning the properties ofβ-lactoglobulin nanofibrils with pH, NaCl and CaCl2[J].International Dairy Journal, 2010, 20 (9) :571-579.
[19] Bromley E H C, Krebs M R H, Donald A M.Aggregation across the length-scales inβ-lactoglobulin[J].Faraday Discussions, 2005, 128:13-27.
[20] Jarrett J T, Lansbury P T.Seeding“one-dimensional crystallization”of amyloid:A pathogenic mechanism in Alzheimer’s disease and scrapie?[J].Cell, 1993, 73 (6) :1055-1058.
[21] Nilsson M R.Techniques to study amyloid fibril formation in vitro[J].Methods, 2004, 34 (1) :151-160.
[22] Bolder S G, Sagis L M C, Venema P, et al.Effect of stirring and seeding on whey protein fibril formation[J].Journal of Agricultural and Food Chemistry, 2007, 55 (14) :5661-5669.
[23] Ardy K N, Venema P, Bouman J, et al.Influence of protein hydrolysis on the growth kinetics ofβ-lg fibrils[J].Langmuir, 2011, 27 (10) :5753-5761.
[24] Akkermans C, Venema P, Van Der Goot A J, et al.Enzyme-induced formation ofβ-Lactoglobulin fibrils by AspN endoproteinase[J].Food Biophysics, 2008, 3 (4) :390-394.
[25] Biancalana M, Makabe K, Koide A, et al.Molecular mechanism of Thioflavin-T binding to the surface ofβ-rich peptide self-assemblies[J].Journal of Molecular Biology, 2009, 385 (4) :1052-1063.
[26] 洪法水.Pb2+对α-淀粉酶活性的影响及其光谱学的研究[J].光谱学与光谱分析, 2003, 23 (3) :583-586. [27] 谢孟峡, 刘媛.红外光谱酰胺III带用于蛋白质二级结构的测定研究[J].高等学校化学学报, 2003, 24:226-231. [28] Lomakin A, Benedek G B, Teplow D B.Monitoring protein assembly using quasielastic light scattering microscopy[J].Methods in Enzymology, 1999, 309:429-459.
[29] Bolisetty S, Adamcik J, Mezzeng R.Snapshots of fibrillation and aggregation kinetics in multistranded amyloidβ-lactoglobulin fibrils[J].Soft Matter, 2011, 7 (2) :493-499.
[30] Akkermans C, Van Der Goot A J, Venema P, et al.Properties of protein fibrils in whey protein isolate solutions:Microstructure, flow behaviour and gelation[J].International Dairy Journal, 2008, 18 (10/11) :1034-1042.
[31] Humblet K N P.5th International symposium on food rheology and structure[C].Encapsulation systems based on proteins, polysaccharides, and protein-polysaccharide complexes, Switzerland, 2009:180-183.
[32] Sagis L M C, De Ruite R, Mirand F J R, et al.Polymer microcapsules with a fiber-reinforced nanocomposite shell[J].Langmuir, 2008, 24 (5) :1608-1612.
[33] Rossier Miranda F J, Schroen K, Boom R.Mechanical characterization and pH response of fibril-reinforced microcapsules prepared by layer-by-layer adsorption[J].Langmuir, 2010, 26 (24) :19106-19113.
[34] Jung J M, Gunes D Z, Mezzenga R.Interfacial activity and interfacial shear rheology of nativeβ-Lactoglobulin monomers and their heat-induced fibers[J].Langmuir, 2010, 26 (19) :15366-15375.
[35] Astwood J D, Leach J N, Fuchs R L.Stability of food allergens to digestion in vitro[J].Nature Biotechnology, 1996, 14:1269-1273.
[36] Bateman L, Ye A, Singh H.In vitro digestion ofβ-Lactoglobulin fibrils formed by heat treatment at low pH[J].Journal of Agricultural and Food Chemistry, 2010, 58 (17) :9800-9808.
计量
- 文章访问数: 160
- HTML全文浏览量: 15
- PDF下载量: 376