Analysis of the impact factors and kinetics of the sonolytic degradation of carbaryl using ultrasonic bath
-
摘要: 采用低功率槽式超声场研究氨基甲酸酯类农药甲萘威降解特性,探讨了功率、频率、温度、pH对甲萘威超声降解的影响。结果表明,50℃、0.45W/cm2、pH6.5时,28、40、50、135kHz相比较,135kHz降解率最大,100min后约有40.1%的甲萘威降解;50kHz、50℃、pH6.5下,0.45W/cm2的降解率为0.05W/cm2的4.3倍,降解速率随功率递增;50kHz、0.45W/cm2、pH6.5时,超声处理100min后,60℃下共有约45%甲萘威降解,是20℃下的10倍,降解率随温度递增;在50kHz、50℃、0.45W/cm2条件下,pH8.0的弱碱水溶液可使超声场中甲萘威降解率增加至pH6.5条件下的2.8倍。超声场中甲萘威的降解特性符合一级反应动力学规律,表观指前因子增大为非超声场中的1.4倍,表观活化能比对应非超声条件下减小9.4%。Abstract: Carbaryl, one of carbamate pesticides, in deionized water, has been studied for its degradation under the radiation of low power ultrasonic bath. Effects of power, frequency, temperature, pH on the ultrasonic degradation of carbaryl has been studied. The result showed that under the experiment condition of 50℃ 、 0.45W/cm 2 、pH6.5, the degradation rate of carbaryl in 135kHz ultrasonic bath was the highest among 28, 40, 50, 135kHz, was about 40.1% after 100min ultrasonic treatment. The degradation rate increased with power, under the experiment condition of 50kHz, 50℃ , pH6.5, the degradation rate of 0.45W/cm 2 was 4.3 times of 0.05W/cm 2 . Under the experiment condition of 50kHz, 0.45W/cm 2 , pH6.5, after ultrasonic treatment for 100min, there are nearly 45% carbaryl degradates and which is about 10 times of the degradation rate under 20℃ . Under the experiment condition of 50kHz, 50℃ , 0.45W/cm 2 , the pH8.0 weak base solution increased the carbaryl degradation rate to 2.8 times of the pH6.5 solution. It was found that the carbaryl degradation process under the ultrasonic radiation were consonant with the apparent pseudo -first -order reaction by the kinetics investigation. The apparent pre -exponential factor increased 40% compared with the original non -ultrasonic condition, the apparent activation energy decreased 9.4% compared with the original non-ultrasonic condition.
-
Keywords:
- ultrasonic;carbaryl;pesticide;degradation; /
-
[1] 秦炜, 原永辉, 戴献元.超声场对化工分离过程的强化[J].化工进展, 1995, 14 (1) :1-5. [2] 李雅莉.超声波清洗的原理和实际应用[J].清洗世界, 2006 (7) :31-35. [3] 庞斌, 胡志超.超声波技术在果蔬加工中的应用[J].农机化研究, 2010 (4) :217-220. [4] 王海鸥, 胡志超, 吴峰, 等.超声波臭氧组合果蔬清洗机设计与实验[J].农业机械学报, 2011, 42 (7) :165-169. [5] 张学杰, 郭科, 李琨, 等.超声波清洗对胡萝卜和普通白菜洁净度的影响[J].中国蔬菜, 2011 (1) :89-91. [6] 高振鹏, 岳田利, 袁亚宏, 等.苹果汁中展青霉素的超声波降解[J].农业机械学报, 2009, 40 (9) :138-142. [7] 袁亚宏, 王周利, 蔡瑞, 等.苹果汁中拟除虫菊酯类农药的超声波-TiO_2催化去除[J].农业机械学报, 2011, 42 (11) :124-129. [8] 钟爱国.功率超声波诱导降解水体中乙酰甲胺磷[J].水处理技术, 2001, 27 (1) :47-49. [9] 钟爱国.超声波诱导降解甲胺磷[J].化工环保, 2000, 20 (2) :17-19. [10] Collings A F, Gwan P B.Ultrasonic destruction of pesticide contaminants in slurries[J].Ultrasonics Sonochemistry, 2010, 17 (1) :1-3.
[11] 吴葛洋, 曹雁平, 王蓓, 等.超声场对固定化木瓜蛋白酶的影响研究[J].食品工业科技, 2011, 32 (10) :142-145. [12] 许楠, 卓雅, 曹雁平, 等.表没食子儿茶素没食子酸酯 (EGCG) 在超声场中热稳定性的动力学[J].食品科学, 2011, 32 (21) :86-90. [13] Zhang Y Y, Zhang Z, Chen F, et al.Effect of sonication on eliminating of phorate in apple juice[J].Ultrasonics Sonochemistry, 2012, 19 (1) :43-48.
[14] Kidak R, Ince N H.Ultrasonic destruction of phenol and substituted phenols:A review of current research[J].Ultrasonics Sonochemistry, 2006, 13 (3) :195-199.
[15] 孙红杰, 张志群.超声降解甲胺磷农药废水[J].中国环境科学, 2002, 22 (3) :19-22. [16] Khoobdel M, Shayeghi M, Golsorkhi S, et al.Effectiveness of Ultrasound and Ultraviolet Irradiation on Degradation of Carbaryl from Aqueous Solutions[J].Iranian Journal of Arthropod-Borne Diseases, 2010, 4 (1) :47-53.
[17] 郭洪光, 黄鑫, 高乃云, 等.超声波降解乐果的动力学和影响因素分析[J].四川大学学报:工程科学版, 2011, 43 (1) :208-213. [18] Bhatnagar A, Cheung H M.Sonochemical Destruction of Chlorinated C1and C2Volatile Organic Compounds in Dilute Aqueous Solution[J].Environment Science Technology, 1994, 28 (8) :1481-1486.
[19] 张晓明, 周志强, 徐彦军, 等.甲萘威在水环境中的水解及其影响因素[J].环境化学, 2006, 25 (5) :580-583. [20] 罗永宏, 宋超, 陈家长.氨基甲酸酯类农药甲萘威的毒理学及环境归趋研究进展[J].江苏农业科学, 2012, 40 (1) :324-329. [21] 王西奎, 陈贯虹, 国伟林.水溶液中甲基橙的超声化学降解动力学研究[J].环境污染与防治, 2004, 26 (1) :6-13. [22] 刘越男, 吕效平, 韩萍芳.超声气升式环流反应器降解乐果水溶液的动力学研究[J].环境科学, 2008, 29 (6) :1502-1507.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: