pH及通气量对法夫酵母生物量以及所产6G-果糖基转移酶活性的影响
详细信息Effect of pH and ventilatory capacity control strategies on biomass and 6G-fructofuranosidase activity of Xanthophyllomyces dendrorhous in the fermentor
-
摘要: 实验分别考察了5L发酵罐中恒定pH7.0、8.0、9.0和发酵前期每隔4h、发酵后期每隔12h改变pH的梯度控制方法以及不同通气量对法夫酵母发酵过程中生物量以及所产6G-果糖基转移酶活性的影响,结果表明,恒定的pH7.0和通气量5L/min最有利于细胞生长,得到最大生物量(干重)分别为11.6和11.8g/L。恒定的pH8.0和通气量8L/min最有利于酶活性,得到最高酶活性都为0.32mol/L/min,综合考虑生物量以及酶活性,最终确定优化后的发酵条件是控制发酵过程pH为8.0,通气量为8L/min,发酵以后在72h得到最大生物量为11.20g/L,最高酶活为0.32mol/L/min。
-
关键词:
- 法夫酵母; /
- pH控制; /
- 通气量; /
- 6G-果糖基转移酶;
Abstract: The effect of initial culture pH and controlled pH ranging from 7. 0 to 9. 0 and VC (ventilatory capacity) ranging from 5 to 12L/min on biomass and 6G-fructofuranosidase activity by Xanthophyllomyces dendrorhous which were using in the free-whole-cell biotransformation were investigated in batch fermentation. An optimal pH of 7. 0 and VC of 5L/min were obtained for cell growth, cell density was 11. 6g/L and 11. 8g/L, respectively, and an optimal pH of 8. 0 and VC of 8L/min were obtained for 6G-fructofuranosidase activity, both of them were 0. 32mol/L/min. Comprehensive consideration of the cell density and 6G-fructofuranosidase activity, the final optimal pH and VC for fermentation was 8. 0 and 8L/min, respectively. -
[1] 郑建仙.功能性低聚糖[M].北京:化工工业出版社, 2004:1-6. [2] Killan S G, Kritzinger S M, Rycroft C, et al.The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota[J].World Journal of Microbiology and Biotechnology, 2000, 22:1465-1469.
[3] Hammer H.The trisaccharide fraction of some plants belonging to the Amaryllidaceae[J].Acta Chemica Scandinavica, 1986, 22:197-199.
[4] Hidaka H, Hirayama M.Useful characteristics and commercial applications of fricto-oligosaccharides[J].Biotechnology letters, 1996, 18:975-980.
[5] Nizhizawa K, Nakajima M, Nabetani H.Kinetic study on transfructosylation by fructofuranosidase from Aspergillus niger ATCC20611and availability of a membrance reactor for Fructooligosaccharide production[J].Food Science and Technology Research, 2001, 7:39-44.
[6] Hayashi S, Yoshiyama T, Fuji N, et al.Production of a novel syrup containing neofructooligosaccharides by the cells of Penicillium citrinum[J].Biotechnology Letters, 2000, 22:1465-1469.
[7] Blecker C, Fouguies C, Van Herck J C, et al.Kinetic study of the acid hydrolysis of various oligofructose samples[J].Journal of Agricultural Chemistry, 2002, 50:1602-1607.
[8] Van Hijum S, Van Geel-Schutten G H, Rahouri H, et al.Characterization of a novel fructosyl transferase from Lactobacillus reutri that synthesizes high molecular weight inulin and inulin oligosaccharides[J].Applied and Environmental Microbiology, 2002, 68:4390-4398.
[9] Kilian S G, Sutherland F C W, Meyer P S, et al.Transportlimited sucrose utilization and neokestose production by Phaffia rhodozyma[J].Biotechnology Letters, 1996, 18:975-980.
[10] 张静娟.法夫酵母发酵生产新科斯糖[D].无锡:江南大学食品学院, 2007. [11] 宁亚维, 张静娟, 苏丁, 等.法夫酵母产新科斯糖的发酵条件[J].食品与生物技术学报, 2010, 29 (3) :458-463. [12] 苏丁, 陈晓明, 徐学明.法夫酵母低聚糖结构分析的研究[J].食品与生物技术学报, 2009, 28 (2) :197-200. [13] Jing Chen, Xiaoming Chen, Xueming Xu, et al.Biochemical characterization of a Xanthophyllomyces dendrorhous intracellular6G-fructofuranosidase and its use in production of neo-fructooligosaccharides[J].Bioresource Technology, 2011, 102:1715-1721.
[14] 徐学明, 张静娟, 金征宇.一种低聚糖一新科斯糖的发酵法生产方法[P].中国专利:CNl00392091C, 2008-06-04. [15] NING Yawei, WAN Jinpeng, CHEN Jing.Production of neo-fructooligosaccharides using free-whole-cell biotransformation by Xanthophyllomyces dendrorhous[J].Bioresource Technology, 2010, 101 (19) :7472-7478.
[16] 徐学明, 金征宇, 吕玉华.虾青素高产突变株的选育[J].食品与发酵工业, 2000, 26 (5) :22-27. [17] 徐学明, 金征宇, 刘当慧.法夫酵母产虾青素的摇瓶工艺[J].无锡轻工大学学报, 2000, 19 (3) :230-235. [18] 纪晓俊, 黄和, 朱建国, 等.1, 3.丙二醇发酵过程中pH调控策略研究[J].武汉理工大学学报, 2007, 29 (3) :75-78. [19] 刘亚丽, 贾士儒, 谭之磊, 等.pH调控和蔗糖流加控制对乳酸链球菌素发酵的影响[J].天津科技大学学报, 2008, 23 (3) :5-7.
计量
- 文章访问数: 135
- HTML全文浏览量: 7
- PDF下载量: 156