• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

单糖构成及比例变化对低聚糖清除自由基及促进肠道乳杆菌增殖的影响

邬澄飞, 李炎, 乐国伟, 王海松, 施用晖

邬澄飞, 李炎, 乐国伟, 王海松, 施用晖. 单糖构成及比例变化对低聚糖清除自由基及促进肠道乳杆菌增殖的影响[J]. 食品工业科技, 2014, (09): 49-52. DOI: 10.13386/j.issn1002-0306.2014.09.001
引用本文: 邬澄飞, 李炎, 乐国伟, 王海松, 施用晖. 单糖构成及比例变化对低聚糖清除自由基及促进肠道乳杆菌增殖的影响[J]. 食品工业科技, 2014, (09): 49-52. DOI: 10.13386/j.issn1002-0306.2014.09.001
WU Cheng-fei, LI Yan, LE Guo-wei, WANG Hai-song, SHI Yong-hui. Effect of the composing and monosaccharides ratio changing of oligosaccharides on free radical scavenging activity and Lactobacillus proliferation[J]. Science and Technology of Food Industry, 2014, (09): 49-52. DOI: 10.13386/j.issn1002-0306.2014.09.001
Citation: WU Cheng-fei, LI Yan, LE Guo-wei, WANG Hai-song, SHI Yong-hui. Effect of the composing and monosaccharides ratio changing of oligosaccharides on free radical scavenging activity and Lactobacillus proliferation[J]. Science and Technology of Food Industry, 2014, (09): 49-52. DOI: 10.13386/j.issn1002-0306.2014.09.001

单糖构成及比例变化对低聚糖清除自由基及促进肠道乳杆菌增殖的影响

基金项目: 

国家十二五科技支撑计划(2012BAD33B05); 国家自然科学基金(31201805); 江苏高校优势学科建设工程资助项目;

详细信息
    作者简介:

    邬澄飞 (1991-) , 本科, 研究方向:食品科学与工程。;

  • 中图分类号: TS201.3

Effect of the composing and monosaccharides ratio changing of oligosaccharides on free radical scavenging activity and Lactobacillus proliferation

  • 摘要: 目的:研究单糖构成种类及单糖比例变化对低聚糖功能的影响。方法:以人体结肠内菌群为研究对象,采用荧光原位杂交(FISH-FC)技术,研究低聚糖单糖构成种类及单糖比例变化对促进肠道乳杆菌增殖及提高短链脂肪酸含量的影响。结果:DPPH自由基清除实验表明,低聚糖对自由基的清除能力随着单糖构成种类的增加而提高;而低聚糖构成中半乳糖比例的增加,使低聚糖对DPPH自由基的清除能力提高。乳杆菌增殖实验表明,单糖构成种类的增加显著提高低聚糖促进乳杆菌的增殖(p<0.05)。短链脂肪酸含量测定显示,低聚糖单糖构成种类增加,发酵液中乙酸、丙酸、丁酸含量显著提高(p<0.05),而半乳糖比例增加,发酵液中乙酸、丁酸含量显著提高(p<0.05);丙酸含量也提高,但差异不显著(p>0.05)。结论:低聚糖单糖构成种类增加及半乳糖比例提高有助于增强低聚糖的抗氧化性;低聚糖单糖构成种类增加,乳杆菌群增殖,短链脂肪酸含量提高,半乳糖比例的提高增强了短链脂肪酸中乙酸、丙酸含量。 
    Abstract: Objective: The effect of oligosaccharides composing and ratio changing on its function was studied. Methods: The experiment was using the composing and monodsaccharides ratio changing oligosaccharides fermented colon bacterial, then evaluting the growth of lactobacillus by fluorescence in situ hybridization ( FISH) and testing the amount of short chain fatty acids ( SCFA) by HPLC.Results: DPPH free radical scavenging activity was improved by the imcreasing of monosaccharides composing. Additionally, free radical scavenging activity was improved by the increasing of galactose ratio. The increasing of monosaccharides composing significantly promoted Lactobacillus proliferation ( p < 0.05) and improving the content of SCFA ( p < 0.05) , especially, the improving of galactose molar ratio will significantly increase the acetic acid content of fermentation liquor ( p < 0.05) . Conclusion: The amount of monosaccharide and the increasing of galactose molar ratio could increase antioxidant activity of oligosaccharides.The increasing of monosaccharides composing can raise the content of Lactobacillus and SCFA.
  • [1]

    Voragen A G J.Technological aspects of functional foodrelated carbohydrates[J].Trends in Food Science&Technology, 1998, 9 (8-9) :328-335.

    [2]

    Roberfroid M B.Functional effects of food components and the gastrointestinal system:Chicory fructo-oligosaccharides[J].Nutrition Reviews, 1996, 54 (11) :38-42.

    [3]

    Ganzle M G, Follador R.Metabolism of oligosaccharides and starch in lactobacilli:a review[J].Front Microbiol, 2012, 3:1-15.

    [4]

    Andersen J M, Barrangou R, Hachem M A, et al.Transcriptional analysis of oligosaccharide utilization by bifidobacterium lactis BI-04[J].BioMed central Genomics, 2013, 14:1-14.

    [5]

    Xu Qing, Chao YongLie, Wang WianBing.Health benefit application of functional oligosaccharides[J].Carbohydrate Polymers.2009, 77:435-441.

    [6]

    Solange I M, Ismael M M.Non-digestible oligosaccharides:A review[J].Carbohydrate Polymers.2007, 68:587-597.

    [7]

    Sako T, Matsumoto K, Tanaka R.Recent progress on research and applications of non-digestible galacto-oligosaccharides[J].International Dairy Journal, 1999, 9:69-80.

    [8]

    Espin J, Soler-Rivas C, Wichers H.An easy and fast test to compare total free radical scavenger capacity of foodstuffs[J].Phytochemical Analysis, 2000, 11:330-338.

    [9]

    Leslie D B, Evan C T, George C, et al.Vegetable fiber fermentation by human fecal bacteria:cell wall polysaccharide disappearance and short chain fatty acid production during in vitro fermentation and water holding capacity of unfermented residues[J].Nutrient Metabolism, 1993, 93:860-869.

    [10] 贺晋艳, 张芸, 李伟, 等鹰嘴豆α-低聚半乳糖的肠道益生功能[J].食品科学, 2011, 32 (15) :94-98.
    [11]

    Cinquin C, Blay G L, Fliss I, et al.Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model[J].Microbial Ecology, 2004, 48 (1) :128-138.

    [12]

    Maria L S, Gregory L C, Glenn R G, et al.Selective fermentation of gentiobiose-derived oligosaccharides by human gut bacteria and influence of molecular weight[J].FEMS Micrbiol Ecol, 2006, 56:383-388.

    [13]

    Wellinghausen N, Bartel M, Essig A, et al.Rapid identification of clinically relevant Enterococcus species by fluorescence in situ hybridization[J].J Clin Microbiol, 2007, 45 (10) :3424-3426.

    [14]

    Wallner G, Amann R, Beisker W.Optimizing fluorescent in situ hybridization with rRNA-targeted probes for flow cytometric identification of microorganisms[J].Cytometry, 1993, 14:136-143.

    [15]

    Beatrice Q, Elin G, Vincent Z, et al.Phylogenetic group and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms[J].BMC Microbiology, 2011, 11 (14) :1-12.

    [16]

    Zoetendal E G, Ben Amor K, Harmsen H J, et al.Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes[J].Appl Environ Microbiol, 2002, 68 (9) :4225-4232.

    [17]

    Robert P, Pawel J, Annette Z, et al.Ecophysiology of the Developing Total Bacterial and Lactobacillus Communities in the Terminal Small Intestine of Weaning Piglets[J].Microb Ecol, 2008, 56:474-483

    [18]

    Om P S, Tej K B.DPPH antioxidant assay revisited[J].Food Chemistry, 2009, 113 (4) :1202-1205.

    [19]

    Roediger W E, Duncan A, Kapaniris O, et al.Reducing sulfur compounds of the colon impair colonocyte nutrition:implications for ulcerative colitis[J].Gastroenterology, 1993, 104 (3) :802-809.

    [20]

    Song M, Xia B, Li J.Effects of topical treatment of sodium butyrate and 5-aninosalicylic acid on expression of trefoil factor-3, interleukin-1, and nuclear factor B in trinitrobenzene sulphonic acid induced colitis in rats[J].Postgrad Med J, 2006, 82:130-135.

    [21]

    Snoswell A M, Trinblle R P, Fishlock R C, et al.Metabolic effects in perfused rat liver studies on ketogenesis, glucose output, lactate uptake and lipogenesis[J].Biochimica et Biophysica Acta, 1982, 716:290-297.

    [22]

    Hijova E, Chmelarova A.Short chain fatty acids and colonic health[J].Bratisl Lek Listy, 2007, 108 (8) :354-358.

    [23]

    Saminathan M, Sieo C C, Kalavathy R, et al.Effect of prebiotic oligosaccharides on growth of lactobacillus strains used as a probiotic for chickens[J].2011, 5 (1) :57-64.

计量
  • 文章访问数:  134
  • HTML全文浏览量:  19
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-16

目录

    /

    返回文章
    返回