• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

amiRNA技术及其在食用作物遗传改良中的应用

杨延, 刘迪秋, 葛锋, 陈朝银

杨延, 刘迪秋, 葛锋, 陈朝银. amiRNA技术及其在食用作物遗传改良中的应用[J]. 食品工业科技, 2014, (12): 388-392. DOI: 10.13386/j.issn1002-0306.2014.12.076
引用本文: 杨延, 刘迪秋, 葛锋, 陈朝银. amiRNA技术及其在食用作物遗传改良中的应用[J]. 食品工业科技, 2014, (12): 388-392. DOI: 10.13386/j.issn1002-0306.2014.12.076
YANG Yan, LIU Di-qiu, GE Feng, CHEN Chao-yin. amiRNA technology and its applications in alimentary crop genetic improvement[J]. Science and Technology of Food Industry, 2014, (12): 388-392. DOI: 10.13386/j.issn1002-0306.2014.12.076
Citation: YANG Yan, LIU Di-qiu, GE Feng, CHEN Chao-yin. amiRNA technology and its applications in alimentary crop genetic improvement[J]. Science and Technology of Food Industry, 2014, (12): 388-392. DOI: 10.13386/j.issn1002-0306.2014.12.076

amiRNA技术及其在食用作物遗传改良中的应用

基金项目: 

国家自然科学基金资助(31060044,31260070);

详细信息
    作者简介:

    杨延 (1989-) , 女, 硕士研究生, 研究方向:药用植物生物技术。;

  • 中图分类号: S188

amiRNA technology and its applications in alimentary crop genetic improvement

  • 摘要: 内源miRNAs(microRNAs)是负调控真核生物基因表达的关键因子。amiRNAs(artificial microRNAs)是模拟内源miRNA的生成途径人工合成的miRNA,它能高效抑制靶基因的表达。运用amiRNA技术调控基因表达在调控精确性、效率、遗传稳定性及生物安全性等多方面具有显著优势。本文就amiRNA技术的原理、优势以及该技术在食用作物品质改良及营养改善、雄性不育系培育、抗病毒和抗逆作物培育中的应用进行了综述。 
    Abstract: Endogenous miRNAs (microRNAs) are key factors which negatively regulate gene expression in eukaryotes. amiRNAs (artificial miRNAs) are the artificial miRNAs which are synthesized by simulating the synthesis pathway of endogenous miRNAs. amiRNAs can effectively inhibit the expression of target genes.Application of amiRNA technology in the regulation of gene expression has significant advantages in accuracy, efficiency, genetic stability and biology security. In this review, the principle and advantages of amiRNA technique, and the applications in alimentary crop quality improvement, nutrition improvement, male sterile lines breeding, anti-viral and anti-adversity crop breeding were summarized.
  • [1]

    Kruszka K, Pieczynski M, Windels D, et al.Role of microRNAs and other sRNAs of plants in their changing environments[J].Journal of Plant Physiology, 2012, 169 (16) :1664-1672.

    [2]

    Lee Y, Kim M, Han J, et al.MicroRNA genes are transcribed by RNA polymerase II[J].The EMBO Journal, 2004, 23 (20) :4051-4060.

    [3]

    Kurihara Y, Watanabe Y.Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions[J].Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (34) :12753-12758.

    [4]

    Hofmann N R.MicroRNA evolution in the genus Arabidopsis[J].The Plant Cell, 2010, 22 (4) :994.

    [5]

    Hammond S M, Bernstein E, Beach D, et al.An RNAdirected nuclease mediates post-transcriptional gene silencing in Drosophila cells[J].Nature, 2000, 404:293-296.

    [6]

    Park M Y, Wu G, Gonzalez-sulser A, et al.Nuclear processing and export of microRNAs in Arabidopsis[J].Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (10) :3691-3696.

    [7]

    Perez-quintero A L, Lopez C.Artificial microRNAs and their applications in plant molecular biology[J].Agronomia Colombiana, 2010, 28 (3) :373-381.

    [8]

    Schwab R, Ossowski S, Riester M, et al.Highly specific genesilencing by artificial microRNAs in Arabidopsis[J].The Plant Cell, 2006, 18 (5) :1121-1133.

    [9] 叶梅霞, 崔东青, 李昊, 等.amiRNA分子设计及其离体合成策略[J].中国生物工程杂志, 2010, 30 (9) :92-97.
    [10]

    Schwarb R, Ossowski S, Warthmann N, et al.Directed gene silencing with artificial microRNAs[J].Methods in Molecular Biology, 2010, 592:71-88.

    [11]

    Molnar A, Bassett A, Thuenemann E, et al.Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii[J].The Plant Journal, 2009, 58 (1) :165-174.

    [12]

    Liang G, He H, Li Y, et al.A new strategy for construction of artificial miRNA vectors in Arabidopsis[J].Planta, 2012, 235 (6) :1421-1429.

    [13]

    Yan F, Lu Y W, Wu G T, et al.A simplified method for constructing artificial microRNAs based on the osa-MIR528precursor[J].Journal of Biotechnology, 2012, 160 (3-4) :146-150.

    [14]

    Fedorov Y, Anderson E M, Birmingham A, et al.Off-target effects by siRNA can induce toxic phenotype[J].RNA, 2006, 12 (7) :1188-1196.

    [15]

    Godman J E, Molnar A, Baulcombe D C, et al.RNA silencing of hydrogenase (-like) genes and investigation of their physiological roles in the green alga Chlamydomonas reinhardtii[J].Biochemical Journal, 2010, 431 (3) :345-351.

    [16]

    Chen M L, Wei X J, Shao G N, et al.Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2[J].Plant Breeding, 2012, 131 (5) :584-590.

    [17]

    Schwarb R, Palatnik J F, Riester M, et al.Specific effects of microRNAs on the plant transcriptome[J].Developmental Cell, 2005, 8 (4) :517-527.

    [18]

    Grienenberger E, Besseau S, Geoffroy P, et al.A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines[J].The Plant Journal, 2009, 58 (2) :246-259.

    [19] 李振波, 王琢玉, 刘学群, 等.甘蓝型油菜Bn19070的表达与同源基因At2g19070的amiRNAi研究[J].中国油料作物学报, 2011, 33 (3) :197-201.
    [20]

    Butardo V M, Fitzgerald M A, Bird A R, et al.Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA-and hairpin RNA-mediated RNA silencing[J].Journal of Experimental Botany, 2011, 62 (14) :4927-4941.

    [21]

    Khraiwesh B, Ossowski S, Weigel D, et al.Specific gene silencing by artificial MicroRNAs in Physcomitrella patens:an alternative to targeted gene knockouts[J].Plant Physiology, 2008, 148 (2) :684-693.

    [22]

    Vu T V, Choudhury N R, Mukherjee S K.Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection[J].Virus Research, 2013, 172 (1-2) :35-45.

    [23]

    Belide S, Petrie J R, Shrestha P, et al.Modification of seed oil composition in Arabidopsis by artificial microRNA-mediated gene silencing[J].Frontiers in Plant Science, 2012, 3:1-6.

    [24]

    Sablok G, Perez-quintero A L, Hassan M, et al.Artificial microRNAs (amiRNAs) engineering on how microRNA-based silencing methods have affected current plant silencing research[J].Biochemical and Biophysical Research Communications, 2011, 406 (3) :315-319.

    [25] 张文青.抗性淀粉—功能性食物成分[J].国外医学卫生学分册, 2005, 32 (4) :232-235.
    [26]

    James M G, Denyer K, Myers A M.Starch synthesis in the cereal endosperm[J].Current Opinion in Plant Biology, 2003, 6 (3) :215-222.

    [27]

    Zhao L Q, Li H L, Li R, et al.Cloning of cotton Delta-12Oleate Desaturase gene FAD2-1 and construction of its ihpRNA and amiRNA interfere vectors[J].Agricultural Science&Technology, 2012, 13 (11) :2281-2283, 2286.

    [28]

    Chen S H, Yang Y, Shi WW, et al.Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J].The Plant Cell, 2008, 20 (7) :1850-1861.

    [29]

    Toppino L, Kooiker M, Lindner M, et al.Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes[J].Plant Biotechnology Journal, 2011, 9 (6) :684-692.

    [30]

    Chen H, Jiang S, Zhang J, et al.Improving panicle exsertion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic[J].Plant Biotechnology Journal, 2013, 11 (3) :336-343.

    [31]

    Kung Y J, Lin S S, Huang Y L, et al.Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense singlestranded RNA plant virus[J].Molecular Plant Pathology, 2012, 13 (3) :303-317.

    [32]

    Ai T, Zhang L, Gao Z, et al.Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants[J].Plant Biology, 2011, 13 (2) :304-316.

    [33]

    Jelly N S, Schellenbaum P, Walter B, et al.Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos[J].Transgenic Research, 2012, 21 (6) :1319-1327.

    [34]

    Zhang X H, Li H X, Zhang J H, et al.Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner[J].Transgenic Research, 2011, 20 (3) :569-581.

    [35] 高鹏.针对水稻条纹病毒的人工miRNA设计与应用[D].金华:浙江师范大学, 2010.
    [36]

    Niu Q W, Lin S S, Reyes K C, et al.Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance[J].Nature, 2006, 24 (11) :1420-1428.

    [37]

    Hwang E W, Shin S J, Yu B K, et al.miR171 family members are involved in drought response in Solanum tuberosum[J].Journal of Plant Biology, 2011, 54 (1) :43-48.

    [38]

    Kantar M, Lucus S J, Budak H.miRNA expression patterns of Triticum dicoccoides in response to shock drought stress[J].Planta, 2011, 233 (3) :471-484.

    [39]

    Paul S, Kundu A, Pal A.Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress[J].Plant Cell Tiss Organ Cult, 2011, 105 (2) :233-242.

    [40]

    Eamens A L, Agius C, Smith N A, et al.Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana[J].Molecular Plant, 2011, 4 (1) :157-170.

    [41]

    Chen Y, Chen Z L, Kang J Q, et al.AtMYB14 Regulates Cold Tolerance in Arabidopsis[J].Plant Molecular Biology Reporter, 2013, 31 (1) :87-97.

    [42]

    Wang F L, Liu R H, Wu G T, et al.Specific Downregulation of the Bacterial-Type PEPC Gene by Artificial MicroRNA Improves Salt Tolerance in Arabidopsis[J].Plant Molecular Biology Reporter, 2012, 30 (5) :1080-1087.

    [43] 王云, 左进云, 鞠正, 等.番茄microRNA基因沉默载体的构建方法[J].北方园艺, 2012 (3) :101-104.
    [44]

    Pieczynski M, Marczewski W, Henning J, et al.Downregulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato[J].Plant Biotechnology Journal, 2013, 11 (4) :459-469.

    [45]

    Burgess S J, Tredwell G, Molnar A, et al.Artificial microRNAmediated knockdown of pyruvate formate lyase (]PFL1) provides evidence for an active 3-hydroxybutyrate production pathway in the green alga Chlamydomonas reinhardtii[J].Journal of Biotechnology, 2012, 162 (1) :57-66.

计量
  • 文章访问数:  114
  • HTML全文浏览量:  17
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-02

目录

    /

    返回文章
    返回