Analysis moisture diffusion characteristics of paddy drying parameters based Logarithmic model equation
-
摘要: 稻谷籽粒内部水分扩散的快慢决定了干燥速率。本文基于Logarithmic方程,建立稻谷水分传递动力学模型,并分析热风温度(40、50、60、70℃)和风速(0.3、0.4、0.5 m/s)对稻谷(湿基水分含量23.4%)有效水分扩散系数和扩散活化能的影响。结果表明:随着干燥温度和风速的上升,稻谷干燥速率提高,同时对应的有效水分扩散系数越大,分别为5.123×10-122.141×10-11m2/s;扩散活化能从32.94 k J/mol增加至36.30 k J/mol;对比常用的5种谷物干燥模型发现,Logarithmic模型对稻谷薄层干燥的拟合度较好,R2>0.997,RMSE<2.810×10-3,同时该模型模拟得出的有效水分扩散系数与实际差值均低于3.8×10-13m2/s,扩散活化能均低于2.53 k J/mol,与实际值基本吻合。
-
关键词:
- 有效水分扩散系数 /
- 扩散活化能 /
- Logarithmic模型 /
- 薄层干燥 /
- 稻谷
Abstract: Drying rate of paddy rice was mainly determined by the internal moisture diffusion rate. Based on the Logarithmic equation of hot air drying,the moisture diffusion dynamics model was established,and the effects of heated air temperature( 40,50,60,70 ℃) and air velocity( 0.3,0.4,0.5 m / s) on effective diffusion coefficient and activation energy of moisture diffusion were studied. With the increase of drying temperature and air velocity,the drying rate and corresponding moisture effective diffusion coefficient was increased within the range of 5.123 ×10-12~ 2.141 × 10~(- 11)m2/ s. Meanwhile,the diffusion activation energy was increased from 32.94 k J / mol to36.30 k J / mol. Logarithmic model could fit the thin- layer drying of paddy rice with R2> 0.997 and RMSE < 2.810 ×10-3. The effective moisture diffusion coefficient and diffusion activation energy models were reliable with differences less than 3.8 × 10-13m2/ s and 2.53 k J / mol. -
[1] 杨玲,杨明金,郭孟报,等.油菜籽热风干燥传热传质与优化的研究进展[J].现代食品科技,2014,30(7):306-313. [2] 应巧玲,励建荣,傅玉颖,等.食品薄层干燥技术的研究进展[C].中国食品科学技术学会第六届年会暨第五届东西方食品业高层论坛论文摘要集.115-119. [3] 潘永康,王喜忠,刘相东.现代干燥技术(第三版)[Z].化学工业出版社,2007. [4] 张绪坤,苏志伟,王学成,等.污泥过热蒸汽与热风薄层干燥的湿分扩散系数和活化能分析[J].农业工程学报,2013,29(22):226-235. [5] 黄小丽.稻谷过热蒸汽干燥过程中的力学及干燥动力学特性研究[D].北京:中国农业大学,2014. [6] Mulet A.Drying modelling and water diffusivity in carrots and potatoes[J].Journal of Food Engineering,1994,22(1):329-348.
[7] Kiranoudis C T,Maroulis Z B,Marinos-Kouris D.Heat and mass transfer model building in drying with multiresponse data[J].International Journal of Heat and Mass Transfer,1995,38(3):463-480.
[8] Lu R,Siebenmorgen T J.Moisture diffusivity of long-grain rice components.[J].Transactions of the ASAE,1992,35(6):1955-1961.
[9] Li Z,Kobayashi N,Watanabe F,et al.Sorption drying of soybean seeds with silical gel[J].Drying technology,2002,20(1):223-233.
[10] 李业波,于庆龙.土豆干燥过程中内部传热传质的实验研究[J].农业工程学报,1996,12(4):62-65. [11] Elbert G,Tolaba M P,Aguerre R J,et al.A diffusion model with a moisture dependent diffusion coefficient for parboiled rice[J].Drying Technology,2001,19(1):155-166.
[12] 高思源,李增华,杨永良,等.煤低温氧化活化能与温度关系实验[J].煤矿安全,2011,42(7):23-27. [13] Simal S,Garau M C,Femenia A,et al.A diffusional model with a moisture-dependent diffusion coefficient[J].Drying Technology,2006,24(11):1365-1372.
[14] Hachafzo gˇlu O,Cihan A,Kahveci K.Mathematical modelling of drying of thin layer rough rice[J].Food and Bioproducts processing,2008,86(4):268-275.
[15] Cihan A,Ece M C.Liquid diffusion model for intermittent drying of rough rice[J].Journal of Food Engineering,2001,49(4):327-331.
[16] Chen C,Wu P.Thin-layer drying model for rough rice with high moisture content[J].Journal of Agricultural Engineering Research,2001,80(1):45-52.
[17] 李栋,毛志怀,曹崇文.低温下水稻的薄层干燥模型[J].中国农业大学学报,2000,5(2):37-39. [18] 曹崇文,刘玉峰.水稻干燥模型与干燥机性能预测[J].北京农业工程大学学报,1995,15(2):58-65. [19] 梁礼燕,丁超,杨国峰.稻谷薄层干燥特性及工艺研究[J].粮食储藏,2012,40(6):39-44. [20] 梁礼燕.热风,微波薄层干燥稻谷品质研究[D].南京:南京财经大学,2012. [21] 衣淑娟,冷志杰,许春林,等.水稻薄层干燥的实验研究[J].哈尔滨:东北农业大学学报,1999,30(4):376-381. [22] 邱学岚.干燥后稻米品质分析[D].哈尔滨:东北农业大学,2005. [23] 贾富国,周玉龙.储藏条件下糙米水分扩散规律研究[J].中国粮油学报,2012,27(1):87-90. [24] 孟岳成,王雷,陈杰,等.姜片热风干燥模型适用性及色泽变化[J].食品科学,2014,21:100-105. [25] 刘启觉.高水分稻谷干燥工艺实验研究[J].农业工程学报,2005,21(2):135-139. [26] Steffe J F,Singh R P.Diffusion coefficients for predicting rice drying behaviour[J].Journal of Agricultural Engineering Research,1982,27(6):489-493.
[27] Poomsaad N,Soponronnarit S,Therdyotin A.Diffusion model of paddy drying by fluidization technique:Proceedings of the 14th Memorial CIGR World Congress,Japan,2000[C].
[28] 王剑平,王成芝.谷粒内部水分扩散系数的确定[J].东北农业大学学报,1996,27(1):63-67. [29] 朱志良.正确理解活化能和温度的关系[J].化学教育,1993,5:48-50. [30] 王清成.活化能与温度关系的探讨[J].四川建材学院学报,1989,(1):51-58. [31] 杨玲,陈建,杨屹立,等.甘蓝型油菜籽热风干燥特性及其数学模型[J].现代食品科技,2014,30(8):144-150. [32] Demiray E,Tulek Y.Thin-layer drying of tomato(Lycopersicum esculentum Mill.cv.Rio Grande)slices in a convective hot air dryer[J].Heat and Mass Transfer,2012,48(5):841-847.
[33] O Callaghan J R,Menzies D J,Bailey P H.Digital simulation of agricultural drier performance[J].Journal of Agricultural Engineering Research,1971,16(3):223-244.
[34] Agrawal Y C,Singh R P.Thin-layer drying studies on shortgrain rough rice[M].American Society of Agricultural Engineers,1977.
[35] Diamante L M,Munro P A.Mathematical modelling of the thin layer solar drying of sweet potato slices[J].Solar Energy,1993,51(4):271-276.
[36] Chhinnan M S.Evaluation of selected mathematical models for describing thin-layer drying of in-shell pecans[J].Transactions of the ASAE,1984,27(2):610-615.
[37] Wang C Y,Singh R P.A single layer drying equation for rough rice[J].ASAE paper,1978,78:3001-3006.
[38] Chandra P K,Singh R P.Applied numerical methods for food and agricultural engineers[M].CRC Press,1994.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: