Antioxidant activity and bioavailability of the Pacific cod meat peptides during simulated gastrointestinal digestion and absorption
-
摘要: 以鳕鱼鱼肉蛋白肽为研究对象,构建体外胃肠消化模型和Caco-2细胞吸收模型,模拟连续的胃肠消化、吸收过程,测定抗氧化活性和生物利用度。结果显示:在模拟胃肠消化过程中,鱼肉蛋白肽的水溶性维生素E抗氧化能力(TEAC)变化不显著(p>0.05),DPPH自由基清除率在胃消化阶段下降而在肠消化阶段升高(p<0.05),但低于消化前的水平(p<0.05)。在模拟转运2 h过程中,鱼肉蛋白肽吸收产物的肽氮含量逐渐增加,TEAC和氧自由基抗氧化能力(ORAC)显著升高(p<0.05)。鱼肉蛋白肽的生物利用度显著高于鱼肉(9.1%),且分子量最小的蛋白肽的生物利用度最高(46.2%)。鱼肉蛋白肽经胃肠消化吸收后,具有一定的抗氧化活性且生物利用度较高,为鳕鱼蛋白肽的开发利用提供了理论依据。
-
关键词:
- 胃肠消化 /
- Caco-2细胞模型 /
- 抗氧化活性 /
- 生物利用度
Abstract: Antioxidant activity and bioavailability of the Pacific cod(Gadus macrocephalus) protein peptide were determined during in vitro gastrointestinal digestion model and Caco-2 cell monolayer model simulated the process of gastrointestinal digestion and absorption. The results showed that TEAC activity of fish protein peptide had no obvious variation during gastrointestinal digestion,while DPPH scavenging capacity significantly(p <0.05) reduced after pepsin digestion and obviously picked up but below(p <0.05) the level of before digestion after intestinal digestion. The peptide nitrogen content and antioxidant activity of the absorption components increased(p<0.05) during absorption. The bioavailability of protein peptides was higher than fish meat(9. 1 %), especially, low- molecular- weight fraction of protein peptides had the highest bioavailability(46.2%). The cod protein peptide had antioxidant activity and pretty bioavailability after gastrointestinal digestion and absorption,which provided theoretical evidence for the cod protein peptide development. -
[1] 于琴芳,邓放明.鲢鱼小黄鱼鳕鱼和海鳗肌肉中营养成分分析及评价[J].农产品加工·学刊,2012(9):11-14. [2] Hou H,Li B,Zhao X,et al.Optimization of enzymatic hydrolysis of Alaska pollock frame for preparing protein hydrolysates with low-bitterness[J].LWT-Food Science and Technology,2011,44(2):421-428.
[3] 赵锐,顾谦群.天然活性多肽的研究进展[J].天然产物研究与开发,2000,12(4):84-91. [4] 曹文红,章超桦.生物活性肽的吸收机制[J].药物生物技术,2006,13(5):384-388. [5] You L,Zhao M,Regenstein J M,et al.Changes in the antioxidant activity of loach(Misgurnus anguillicaudatus)protein hydrolysates during a simulated gastrointestinal digestion[J].Food Chemistry,2010,120(3):810-816.
[6] Ekmekcioglu C.A physiological approach for preparing and conducting intestinal bioavailability studies using experimental systems[J].Food Chemistry,2002,76(2):225-230.
[7] Yee S.In vitro permeability across Caco-2 cells(colonic)can predict in vivo(small intestinal)absorption in man—fact or myth[J].Pharmaceutical Research,1997,14(6):763-766.
[8] Ngo D H,Ryu B M,Vo T S,et al.Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod(Gadus macrocephalus)skin gelatin[J].International Journal of Biological Macromolecules,2011,49(5):1110-1116.
[9] 赵玲,孥亚,刘淇,等.鳕鱼骨胶原蛋白肽的抗氧化活性[J].食品与生物技术学报,2013,32(4):425-429. [10] Girgih A T,He R,Hasan F M,et al.Evaluation of the in vitro antioxidant properties of a cod(Gadus morhua)protein hydrolysate and peptide fractions[J].Food Chemistry,2015,173:652-659.
[11] Himaya S W A,Ngo D H,Ryu B M,et al.An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme(ACE)activity and cellular oxidative stress[J].Food Chemistry,2012,132(4):1872-1882.
[12] Farvin K H S,Andersen L L,Nielsen H H,et al.Antioxidant activity of Cod(Gadus morhua)protein hydrolysates:In vitro assays and evaluation in 5%fish oil-in-water emulsion[J].Food Chemistry,2014,149:326-334.
[13] Bidlingmeyer B A,Cohen S A,Tarvin T L.Rapid analysis of amino acids using pre-column derivatization[J].Journal of Chromatography B:Biomedical Sciences and Applications,1984,336(1):93-104.
[14] 谢宁宁.酪蛋白抗氧化肽结构特性与耐消化性的关系研究[D].北京:中国农业大学,2013. [15] 王婵.酪蛋白抗氧化肽对肠肽酶耐受性的研究[D].北京:中国农业大学,2013. [16] 唐小丹,周春霞,洪鹏志,等.罗非鱼肉蛋白的分离及其性质研究[J].食品科技,2011,36(6):156-159. [17] Ohsawa K,Satsu H,Ohki K,et al.Producibility and digestibility of antihypertensiveβ-casein tripeptides,Val-ProPro and Ile-Pro-Pro,in the gastrointestinal tract:analyses using an in vitro model of mammalian gastrointestinal digestion[J].Journal of Agricultural and Food Chemistry,2008,56(3):854-858.
[18] KotzéA F,De Leeuw B J,Lueβen H L,et al.Chitosans for enhanced delivery of therapeutic peptides across intestinal epithelia:in vitro evaluation in Caco-2 cell monolayers[J].International Journal of Pharmaceutics,1997,159(2):243-253.
[19] Re R,Pellegrini N,Proteggente A,et al.Antioxidant activity applying an improved ABTS radical cation decolorization assay[J].Free Radical Biology and Medicine,1999,26(9):1231-1237.
[20] Li B,Chen F,Wang X,et al.Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry[J].Food Chemistry,2007,102(4):1135-1143.
[21] Ou B,Hampsch-Woodill M,Prior R L.Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe[J].Journal of Agricultural and Food Chemistry,2001,49(10):4619-4626.
[22] Dávalos A,Gómez-Cordovés C,BartoloméB.Extending applicability of the oxygen radical absorbance capacity(ORACfluorescein)assay[J].Journal of Agricultural and Food Chemistry,2004,52(1):48-54.
[23] Xie N,Wang C,Ao J,et al.Non-gastrointestinal-hydrolysis enhances bioavailability and antioxidant efficacy of casein as compared with its in vitro gastrointestinal digest[J].Food Research International,2013,51(1):114-122.
[24] 周秀琴.日本天然调味料开发现状[J].中国调味品,1993(11):1-8. [25] Sarmadi B H,Ismail A.Antioxidative peptides from food proteins:a review[J].Peptides,2010,31(10):1949-1956.
[26] Cheung I W Y,Cheung L K Y,Tan N Y,et al.The role of molecular size in antioxidant activity of peptide fractions from Pacific hake(Merluccius productus)hydrolysates[J].Food Chemistry,2012,134(3):1297-1306.
[27] Silk D B A,Hegarty J E,Fairclough P D,et al.Characterization and nutritional significance of peptide transport in man[J].Annals of Nutrition and Metabolism,1982,26(6):337-352.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: