Optimization of protoplast formation,regenerationin and transformation in Aspergillus niger
-
摘要: 以一株产柠檬酸的黑曲霉菌株为研究材料,为了优化菌株的深层发酵形态,提高柠檬酸产量,采用RNA干扰的方法,使与形态建成相关的几丁质合成酶chs基因沉默。首先将酶切得到的chs基因片段与质粒p JL43-RNAi连接,构建成干扰载体。为提高干扰载体的转化率,对原生质体制备、再生和转化条件进行了优化。然后通过聚乙二醇(PEG)介导,将构建的干扰载体导入黑曲霉的原生质体中,经过转化,筛选出形态突变株,并进行深层发酵。结果表明,在36.5℃培养16 h的幼嫩菌丝最利于原生质体释放;而5 mg/m L的溶菌酶,10 mg/m L的蜗牛酶和10 mg/m L的纤维素酶组成的混合酶系为最优的酶组合;在30℃下,以100 r/min酶解3 h可使原生质体的最大产量达到5.11×106/m L。最优的再生培养基为完全培养基,可以使再生率达到35.33%。获得的3株转化株的chs基因表达量降低,同时在深层发酵过程中,菌球的分支频率降低,分支缩短,离散菌丝减少,柠檬酸产量也分别提高12.33%,24.17%和19.61%。通过分子改造的形态突变株具有良好的产酸性能,对推动柠檬酸发酵工业的进步有重要意义。Abstract: For improving the mycelial morphology and citric acid production of A.niger,we construct a gene silencing vector by RNA interference technology to silence the chitin synthase gene. The fragments of chs gene were amplified by PCR,which was ligated to plasmid p JL43- RNAi to generate the RNAi vector.In order to increase the transformation frequency,the effects of some factors on protoplast formation and regeneration from citric acid-producing fungus A.niger were investigated.The silencing vectors were introduced into purificatory protoplasts by a polyethylene glycol( PEG)- mediated transformation method. The results showed that the mycelia incubated for16 h at 36.5 ℃ were most suitable for protoplast release,which digested by enzyme combination of 5 mg / m L lysozyme,10 mg / m L snailase and 10 mg / m L cellulase for 3 h as 100 r / min at 30 ℃,and a high yield of protoplasts( 5.11 × 106/ m L) were obtained.In addition,the maximum regeneration rate was 35.33%,while the complete medium as the regeneration media. After conversion,three morphological mutant strains are smoother and have less dispersed mycelia,which were distinct from the original strain in morphology.The transformants chs-1,chs-2 and chs-3 where citric acid production rise by 12.33%,24.17% and 19.61%,respectively.The morphological mutants of chs exhibited the excellent production potential during submerged culture,which had important significance for the development of the citric acid fermentation industry.
-
Keywords:
- Aspergillus niger /
- protoplasts /
- RNAi /
- chitin synthase /
- morphological mutant
-
[1] 张晓立,郑小梅,满云,等.黑曲霉柠檬酸工业菌株原生质体制备与转化[J].生物技术通报,2015,31(3):171-177. [2] Meyer V.Genetic engineering of filamentous fungi-Progress,obstacles and future trends[J].Biotechnol Adv,2008,26(2):177-185.
[3] Chadegani M,Brink JJ,Shehata A,et al.Optimization of protoplast formation,regeneration,and viability in Microsporu mgypseum[J].Mycopathologia,1989,107(1):33-50.
[4] Liu H,Wan g P,Hu YH,et al.Construction of an RNAi expression vector and transformation into Penicillium chrysogenum[J].Ann Microbiol,2014,64(1):113-120.
[5] Mania D,Hilpert K,Ruden S,et al.Screening for antifungal peptides and their modes of action in Aspergillus nidulans[J].Appl Environ Microbiol,2010,76(21):7102-7108.
[6] Sukumar M,Sundar M,Sivarajan M.Penicillin production from transformed protoplast of Penicillium chrysogenum by fermentation[J].J Pharmacogenom Pharmacoproteomics,2010,1:102.
[7] Adams DJ.Fungal cell wall chitinases and glucanases[J].Microbiology,2004,150:2029-2035.
[8] Fujiwara M,Ichinomiya M,Motoyama T,et al.Evidence that the Aspergillus nidulans class I and class II chitin synthase genes,chs C and chs A,share critical roles in hyphal wall integrity and conidiophore development[J].J Biochem,2000,127:359-366.
[9] Müller C,Mc Intyre M,Hansen K,et al.Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis[J].Appl Environ Microbiol,2002,68:1827-1836.
[10] Liu H,Zheng Z,Wang P,et al.Morphological changes induced by class III chitin synthase gene silencing could enhance penicillin production of Penicillium chrysogenum[J].Appl Microbiol Biotechnol,2013,97:3363-3372.
[11] 杨勇,张凤英,陈岑.PDA培养基改良配方的研究[J].酿酒科技,2012,4:29-31. [12] Crawford L,Stepan AM,Mc Ada PC,et al.Production of Cephalosporin inter mediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity[J].Biotechnology,1995,13:58-62.
[13] Vinayagam Ramesh VRM.Sequential Statistical Optimization of Media Components for the Production of Glucoamylase by Thermophilic Fungus Humicola grisea MTCC 352[J].Korean Journal of Crop Science,2014,2014(2):317940-317940.
[14] Hamlyn PF,Bradshaw RE,Mellon F M,et al.Efficient protoplast isolation from fungi using commercial enzymes[J].Enzyme Microb Technol,1981,3(4):321-325.
[15] Zhou X,Wei Y,Zhu H,et al.Protoplast formation,regeneration and transformation from the taxol-producing fungus Ozonium sp[J].Afr J Biotechnol,2008,7(12):2017-2024.
[16] Ruiz-Díez B.Strategies for the transformation of filamentous fungi[J].J Appl Microbiol,2001,92:189-195.
[17] 周东坡,平文祥.微生物原生质体融合[M].哈尔滨:黑龙江科学技术出版社,1990:278. [18] 刘国栋,秦玉琪.黑曲酶N593原生质体形成、再生和转化的研究[J].中国科技论文在线,2012. [19] Gómez R,Schnabe I,Garrido J.Pellet growth and citric acid yield of Aspergillus niger 110[J].Enzyme Microb Technol,1988,10:188-191.
[20] Paul GC,Priede MA,Thomas CR.Relationship between morphology and citric acid production in submerged Aspergillus niger fermentations[J].Biochem Eng J,1999,3:121-129.
[21] Papagianni M.Fungal morphology and metabolite production in submerged mycelial processes[J].Biotechnol Adv,2004,22:189-259.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: