Spectroscopic studies on the binding of Ginkgol C15∶ 1 and Herring Sperm DNA
-
摘要: 目的:研究银杏酚C15∶1与DNA的相互作用情况。方法:吖啶橙(AO)为荧光探针,在293 K和310 K p H7.4的Tris-HCl缓冲液中,采用荧光光谱法、粘度法和热溶解实验研究银杏酚C15∶1和鲱鱼精DNA的相互作用方式。结果:银杏酚C15∶1与AO-DNA之间的猝灭方式为静态猝灭,根据热力学参数确定作用力类型是以氢键作用为主,判断银杏酚C15∶1与AO-DNA之间的作用方式主要是嵌插作用。结论:粘度法及热变性实验结果进一步证明银杏酚C15∶1与AO-DNA之间的主要作用方式是嵌插模式。Abstract: Objective: To study the interaction between Ginkgol C15 ∶ 1 and Herring Sperm DNA. Methods: The interaction between Ginkgol C15 ∶ 1 and Herring Sperm DNA was investigated by fluorescence spectroscopy,viscosity measurements and thermal dissolution assay in the Tris- HCl buffer( p H7.4) at 293 K and 310 K,Acridine Orange( AO) as the fluorescent probe.Results: The fluorescence quenching of Ginkgol C15 ∶ 1 by AO- DNA was a static quenching procedure. The main binding force was hydrogen bond force on the basis of thermodynamic parameters,which indicated the interaction between Ginkgol C15 ∶ 1 and AO- DNA was intercalation. Conclusions:The results of viscosity measurements and the thermal denaturation experiments further demonstrated that intercalative binding was the main mode between Ginkgol C15∶ 1 and AO- DNA.
-
Keywords:
- Ginkgol C15∶ 1 /
- Herring Sperm DNA /
- fluorescence spectrum
-
[1] 段云青,闵顺耕.溴鼠灵与DNA作用机制的光谱研究[J].光谱学与光谱分析,2009,29(4):999-1003. [2] Teris A van Beek.Chemical analysis of Ginkgo biloba Leaves and extracts[J].Journal of Chromatography A,2002,967:21-55.
[3] Teerasripreecha D,Phuwapraisirisan P,Puthong S,et al.In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis[J].BMC Complementary and Alternative Medicine,2012,12(1):1.
[4] 王云飞,杨小明,李月英,等.银杏酚对SMMC-7721肝癌细胞和荷H22肝癌小鼠的抗癌作用[J].江苏大学学报:医学版,2013,23(3):233-237. [5] Yang X M,Wang Y F,Li Y Y,et al.Thermal stability of ginkgolic acids from Ginkgo biloba and the effects of ginkgol C17∶1 on the apoptosis and migration of SMMC7721 cells[J].Fitoterapia,2014,98:66-76.
[6] Fang Y Y,Yang X M,Li Y Y,et al.Spectroscopic studies on the interaction of bovine serum albumin with Ginkgol C15∶1 from Ginkgo biloba L[J].Journal of Luminescence,2015,162:203-211.
[7] Bi S,Qiao C,Song D,et al.Study of interactions of flavonoids with DNA using acridine orange as a fluorescence probe[J].Sensors and Actuators B:Chemical,2006,119(1):199-208.
[8] 毕淑云.药物与生物分子相互作用的光谱研究[D].长春:吉林大学,2006. [9] Zhang G,Fu P,Wang L,et al.Molecular spectroscopic studies of farrerol interaction with calf thymus DNA[J].Journal of Agricultural and Food Chemistry,2011,59(16):8944-8952.
[10] 姜建辉,杨玲.以吖啶橙为荧光探针研究士的宁和布鲁辛与小牛胸腺DNA的相互作用[J].光谱实验室,2012,29(2):955-961. [11] Han L,Zhou Y,Huang X,et al.A multi-spectroscopic approach to investigate the interaction of prodigiosin with ct-DNA[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,123:497-502.
[12] Bi S,Yan L,Wang Y,et al.Spectroscopic study on the interaction of eugenol with salmon sperm DNA in vitro[J].Journal of Luminescence,2012,132(9):2355-2360.
[13] Sun Y,Bi S,Song D,et al.Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi[J].Sensors and Actuators B:Chemical,2008,129(2):799-810.
[14] Geng S,Wu Q,Shi L,et al.Spectroscopic study one thiosemicarbazone derivative with ct DNA using ethidium bromide as a fluorescence probe[J].International Journal of Biological Macromolecules,2013,60:288-294.
[15] Song Y,Luo D,Ye S,et al.Spectroscopic studies on the interaction between EcoRI and Cd S QDs and conformation of EcoRI in EcoRI-Cd S QDs bioconjugates[J].Physical Chemistry Chemical Physics,2012,14(47):16258-16266.
[16] Takenaka S,Ihara T,Takagi M.Bis-9-acridinyl derivative containing a viologen linker chain:electrochemically active intercalator for reversible labelling of DNA[J].J Chem Soc,Chem Commun,1990(21):1485-1487.
[17] Satyanarayana S,Dabrowiak J C,Chaires J B.Neither DELTA-nor LAMBDA-tris(phenanthroline)ruthenium(II)binds to DNA by classical intercalation[J].Biochemistry,1992,31(39):9319-9324.
[18] Kashanian S,Dolatabadi J E N.DNA binding studies of 2-tert-butylhydroquinone(TBHQ)food additive[J].Food Chemistry,2009,116(3):743-747.
[19] Deng H,Li H,Xu H,et al.Influence of ligand configuration and hydrophobicity on DNA binding of polypyridyl ruthenium(II)complexes[J].ACTA CHIMICA SINICA-CHINESE EDITION-,2002,60(12):2159-2166.
[20] Zhang Z,Dong X.Interaction of DNA with a novel photoactive platinum diimine complex[J].Biometals,2009,22(2):283-288.
[21] Huang J,Wang X.Spectroscopic investigations of interactions between Hematoxylin-Ag+complex and Herring-sperm DNA with the aid of the acridine orange probe[J].Journal of Molecular Structure,2012,1010:73-78.
[22] Kashanian S,Javanmardi S,Chitsazan A,et al.Fluorometric study of fluoxetine DNA binding[J].Journal of Photochemistry and Photobiology B:Biology,2012,113:1-6.
[23] 贺吉香,江崇球,高明霞.盐酸小檗碱与脱氧核糖核酸相互作用的研究[J].光谱学与光谱分析,2003,23(4):755-758. [24] Kumar C V,Turner R S,Asuncion E H.Groove binding of a styrylcyanine dye to the DNA double helix:the salt effect[J].Journal of Photochemistry and Photobiology A:Chemistry,1993,74(2):231-238.
[25] 付彩霞,张怀斌,李光.核黄素与鲱鱼精DNA相互作用的荧光光谱[J].光谱实验室,2011,28(4):1727-1730. [26] 刘雪雪.光谱法研究小分子与核酸的相互作用及同时测定酚类物质[D].郑州:郑州大学,2013.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: