• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

广西长寿人群食谱中膳食纤维复合体提取工艺优化及其特性

时凤翠, 于晓涵, 韩坤宸, 郑文轩, 李锐定, 宋瑶, 廖艳婷, 李全阳

时凤翠,于晓涵,韩坤宸,等. 广西长寿人群食谱中膳食纤维复合体提取工艺优化及其特性[J]. 食品工业科技,2022,43(14):215−223. doi: 10.13386/j.issn1002-0306.2021100163.
引用本文: 时凤翠,于晓涵,韩坤宸,等. 广西长寿人群食谱中膳食纤维复合体提取工艺优化及其特性[J]. 食品工业科技,2022,43(14):215−223. doi: 10.13386/j.issn1002-0306.2021100163.
SHI Fengcui, YU Xiaohan, HAN Kunchen, et al. Optimization of Extraction Process and Characteristics of Dietary Fiber Complex in Recipes of Longevity People in Guangxi[J]. Science and Technology of Food Industry, 2022, 43(14): 215−223. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100163.
Citation: SHI Fengcui, YU Xiaohan, HAN Kunchen, et al. Optimization of Extraction Process and Characteristics of Dietary Fiber Complex in Recipes of Longevity People in Guangxi[J]. Science and Technology of Food Industry, 2022, 43(14): 215−223. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100163.

广西长寿人群食谱中膳食纤维复合体提取工艺优化及其特性

基金项目: 国家自然科学基金(项目批准号:31871802);广西重点研发计划项目(桂科AB18221065)。
详细信息
    作者简介:

    时凤翠(1996−),女,硕士,研究方向:食品营养与健康,E-mail:1648104023@qq.com

    通讯作者:

    李全阳(1964−),男,博士,教授,研究方向:食品营养与健康,E-mail:liquanyang@gxu.edu.cn

  • 中图分类号: TS201.1

Optimization of Extraction Process and Characteristics of Dietary Fiber Complex in Recipes of Longevity People in Guangxi

  • 摘要: 在前期对广西长寿人群队列饮食研究的基础上总结出长寿人群食谱,本研究以食谱中特定比例的8种代表性膳食纤维复合体(dietary fiber complex,DFC)作为研究对象,采用超声波辅助酶法提取,通过单因素实验和响应面试验探究提取工艺的最优条件,并进行基本组成成分以及理化性质分析。结果表明:在α-淀粉酶添加量0.3%,超声波功率242 W,液料比15 mL/g,提取温度86 ℃时,总膳食纤维(total dietary fiber,TDF)的最大得率为63.90%,与理论预测值基本一致。优化后DFC中的蛋白质、脂肪等杂质含量分别由(2.66%±0.12%)、(5.31%±0.14%)降至(1.90%±0.08%)、(1.77%±0.26%),且TDF含量有显著提高(P<0.05),从(39.71%±1.17%)增加至(64.83%±0.28%)。持水力、膨胀力、持油力、乳化能力和乳化稳定性分别提高了5.36 g/g、2.83 mL/g、3.56 g/g、21.81%、36.8%。因此认为不同种类、特定比例的多种膳食纤维复合体(DFC)具有良好的品质,为广西长寿人群食谱中膳食纤维复合体特性的了解及应用提供了理论参考。
    Abstract: Based on the previous study on the diet of the cohort of long-lived people in Guangxi, the recipes of long-lived people were summarized. In this study, eight representative dietary fiber complexes (DFC) with specific proportion in the recipes were extracted by ultrasonic assisted enzyme method, and the optimal conditions of extraction process were explored through single factor and response surface tests, the basic components and physical and chemical properties were analyzed. The results showed that the maximum yield of total dietary fiber (TDF) was 63.90%, which was basically consistent with the theoretical prediction when the addition of α-amylase was 0.3%, the ultrasonic power was 242 W, the liquid-solid ratio was 15 mL/g and the extraction temperature was 86 ℃. After optimization, the contents of protein, fat and other impurities in TDF decreased from (2.66%±0.12%) and (5.31%±0.14%) to (1.90%±0.08%) and (1.77%±0.26%) respectively, and the content of TDF increased significantly (P<0.05) from (39.71%±1.17%) to (64.83%±0.28%). The water holding capacity, swelling capacity, oil holding capacity, emulsifying capacity and emulsifying stability were increased by 5.36 g/g, 2.83 mL/g, 3.56 g/g, 21.81% and 36.8% respectively. Therefore, it could be considered that a variety of dietary fiber complexes (DFC) with different types and specific proportions had good quality, which would provides a theoretical reference for the understanding and application of the characteristics of dietary fiber complexes in the recipes of long-lived people in Guangxi.
  • 广西巴马县是世界知名的长寿之乡,长寿现象凸显。根据2020年第七次全国人口普查数据显示,巴马瑶族自治县100岁及以上老人比例为43人/10万人,远高于中国老年学和老年医学学会组织对“长寿之乡”的认定标准(11人/10万人)。本团队前期对广西长寿人群饮食特征进行了调研,巴马地区传统饮食主要以植物性食物如粗杂粮、蔬菜和水果等食物摄入为主,膳食纤维摄入量相对较高[1-2],认为膳食纤维对长寿现象的形成联系紧密。依据前期调研结果,结合中国居民膳食营养素推荐摄入量,本团队总结出了反映长寿人群饮食特征的食谱。对反映长寿人群饮食特征的食材,利用该食谱结合营养素摄入量与能量限制的因素进行研究,发现该食谱具有良好的抗衰老作用和开发潜力[3-4],但其中膳食纤维从中发挥了多大作用还未做研究。

    膳食纤维(dietary fiber, DF)被人类称为“第七大营养素”,具有缓解便秘、维持肠屏障完整性、调节血糖血脂代谢、降低胆固醇、防治癌症、增强免疫功能等作用[5-7]。目前,关于膳食纤维的提取及特性分析已被广泛研究,千春录等[8]采用酶-碱法对水芹中膳食纤维进行提取优化;Jia等[9]通过酶-化学法提取优化毛木耳中膳食纤维;Kurek等[10]以藜麦、苋菜和小米三种膳食纤维为研究对象,采用酶、酶超声和超声法提取并探究了其不同理化性质与营养参数,这些报道多是以某种或者某几种膳食纤维为研究对象,关于一个具体食谱中所有代表性膳食纤维的复合体作为研究对象目前尚未见报道。

    本团队前期针对广西长寿人群膳食中谷物和果蔬膳食纤维的益生效果进行了研究,聂梦琳等[11]采用酶-碱法提取优化火麻中膳食纤维,发现火麻膳食纤维具有良好的益生特性,饶川艳等[12]发现广西长寿人群膳食中代表性膳食纤维具有显著的抗氧化效果,然而食谱中膳食纤维通常为多种食材组成的复合体,研究膳食纤维复合体能更真实地反映食谱的饮食特征。因此,为了探究膳食纤维在食谱中发挥作用的机制,本文以食谱中代表性膳食纤维红薯叶、枸杞叶、苦麦菜、空心菜、香蕉、芭蕉、沃柑、芋头等[2]8种作为原料,进行不同比例的复合,采用超声波辅助酶法进行提取,通过单因素和响应面试验探究TDF得率最高时的工艺参数,然后对提取产物进行基本成分和理化性质分析,以期为长寿地区特色功能性产品的开发提供理论支持。

    红薯叶、枸杞叶、苦麦菜、空心菜、香蕉、芭蕉、沃柑、芋头、金龙鱼花生油 当地农贸市场;α-淀粉酶(CAS9000-90-2,4000 U/g) 上海江莱生物科技有限公司;α-淀粉酶溶液(CAS9000-85-5,10000±1000 U/mL)、淀粉葡糖苷酶溶液(CAS9032-08-0,2000~3000 U/mL)、蛋白酶溶液(CAS9014-01-1,300~400 U/mL) 嘉兴思成化工有限公司;95%乙醇 成都市科隆化学品有限公司;草酸铵 天津市科密欧化学试剂有限公司;硼氢化钠 天津欧博凯化工有限公司;冰醋酸 天津新技术产业园区科茂化学试剂有限公司;其他试剂 均为国产分析纯。

    XT-A400型多功能粉碎机 永康市红太阳机电有限公司;WGL-125B电热鼓风干燥箱 天津市泰斯特仪器有限公司;HH-4数显恒温水浴锅 金坛区水北科普实验仪器厂;KQ-800DE数控超声波清洗器 昆山市超声仪器有限公司;RE-2000A旋转蒸发器 上海亚荣生化仪器厂;TG16-WS台式高速离心机 湖南湘仪实验室仪器开发有限公司;UP-FG-1台式冷冻干燥机(多歧管压盖型) 上海优普实业有限公司;K-375全自动凯氏定氮仪 上海沃珑仪器有限公司;HYP-314十四孔智能消化炉 上海纤检仪器有限公司;SZF-06C脂肪测定仪 浙江托普仪器有限公司;SX2-10-13马弗炉 上海实研电炉有限公司。

    红薯叶、枸杞叶、苦麦菜、空心菜、芋头:将红薯叶、枸杞叶、苦麦菜、空心菜、芋头分别进行清洗、切段,然后置于电热鼓风干燥箱中65 ℃烘干,烘干后进行粉碎,最后过筛后备用。

    芭蕉、香蕉、沃柑:将芭蕉、香蕉、沃柑分别进行剥皮、切片,然后置于电热鼓风干燥箱中65 ℃烘干,烘干后进行粉碎,最后过筛后备用。

    本文采用超声波辅助酶法提取广西膳食纤维,提取工艺流程设计如图1所示:

    图  1  广西长寿地区代表性膳食纤维提取工艺流程图
    Figure  1.  Process flow chart of representative dietary fiber extraction in longevity area of Guangxi

    准备过筛后的不同种类原料粉末,以本团队对前期获得的长寿人群食谱[3-4]为依据,经计算获得红薯叶、枸杞叶、苦麦菜、空心菜、香蕉、芭蕉、沃柑、芋头的复合比例为1.4:1.3:0.98:0.8:11.5:5.4:1.3:7.4,这就构成了长寿人群膳食纤维复合体(dietary fiber complex,DFC)的初级混合物,将初级混合物充分混匀后按照一定液料比加入蒸馏水,置于100 ℃水煮沸5 min,冷却至室温后添加一定量的α-淀粉酶(CAS9000-90-2,4000 U/g),调整pH至5.0,调整合适的超声波功率辅助酶解20 min,放置于水浴锅中在一定时间温度和时间内进行提取,然后在100 ℃水浴中灭酶10 min,于8000 r/min离心15 min,沉淀物经真空冷冻干燥后得不可溶性膳食纤维(insoluble dietary fiber, IDF);上清液加入4倍体积95%乙醇进行醇沉,于8000 r/min离心10 min,沉淀物经真空冷冻干燥得可溶性膳食纤维(soluble dietary fiber,SDF),IDF和SDF得率分别以下列公式计算。

    IDF(%)=IDFDFC×100
    SDF(%)=SDFDFC×100
    TDF(%)=IDF(%)+SDF(%)

    固定液料比20 mL/g、提取时间90 min、提取温度70 ℃、添加0.3% α-淀粉酶和超声波功率240 W为单因素实验条件,按照1.2.2节超声波辅助酶法,以总膳食纤维(TDF)得率为评价指标,选择液料比(10、15、20、25、30 mL/g)、提取时间(60、90、120、150、180 min)、提取温度(50、60、70、80、90 ℃)、α-淀粉酶添加量(0.2%、0.3%、0.4%、0.5%、0.6%)、超声波功率(80、160、240、320、400 W)5个因素进行单因素实验,考察各因素对TDF得率的影响,每个单因素实验平行重复3次,结果取平均值。

    在单因素实验的基础上,选择α-淀粉酶添加量、超声波功率、液料比和提取温度为因素,TDF得率为响应值进行试验,并进行数据拟合优化广西长寿人群食谱中DFC的提取工艺,试验因素与水平设计见表1

    表  1  响应面试验因素与水平
    Table  1.  Factors and levels used for response surface design
    水平因素
    A α-淀粉酶添加量(%)B超声波功率(W)C液料比(mL/g)D提取温度(℃)
    −10.21601070
    00.32401580
    10.43202090
    下载: 导出CSV 
    | 显示表格

    参考GB 5009.3-2016《食品安全国家标准食品中水分的测定》[13]

    参考GB 5009.4-2016《食品安全国家标准食品中灰分的测定》[14]

    参考GB 5009.5-2016《食品安全国家标准食品中蛋白质的测定》[15]

    参考GB 5009.6-2016《食品安全国家标准食品中脂肪的测定》[16]

    参考Ma等[17]和Capek等[18]的方法并进行修改,将待测样品(Y)与0.25%草酸铵溶液按1:10 m/v的比例混匀后,于90 ℃水浴中连续搅拌2 h,离心收集上清液,重复以上操作两次,合并上清液,装入透析袋(截留分子量:7000 U)中透析至与去离子水的电导率相同,收集截留液冷冻干燥,得到果胶类物质(A1)。上述滤渣依次用80%乙醇洗涤2次,用蒸馏水洗涤3次后,冷冻干燥,在室温下,将冻干后的残渣与含有0.1%硼氢化钠的氢氧化钾溶液(4 mol/L)按1:30 m/v的料液比混合,搅拌提取24 h后过滤,滤液采用醋酸溶液(4 mol/L)中和后,用透析袋透析至与去离子水的电导率相同,截留液冷冻干燥,得到半纤维素(A2);过滤后的残渣洗涤后冻干得样品A3;向A3中按1:1 m/v的比例加入浓硫酸溶液(72%,m/m),于4 ℃冰箱中浸提24 h,依次经过滤、洗涤、干燥得样品A4,其中,灰分质量为A5

    (,%)=A3A4A5Y×100
    (,%)=A4A5Y×100

    式中:A1是果胶类物质的质量,g;A2是半纤维素的质量,g;A3是将A2过滤、洗涤、冻干后沉淀物的质量,g;A4是将A3过滤、洗涤、干燥后沉淀物的质量,g;A5是灰分质量,g。

    参考GB 5009.88-2014《食品安全国家标准食品中膳食纤维的测定》[19]

    参考He等[20]的方法并略作修改,精确称取0.5 g(m1)的TDF、SDF、IDF试样,置于50 mL离心管中,加入10 mL蒸馏水,振荡混匀后,室温下静置24 h,5000 r/min离心20 min,弃去上清液后称质量(m2)。

    (g/g)=m2m1m1

    式中:m1是TDF、SDF、IDF初始样品的质量,g;m2是TDF、SDF、IDF持水后样品的质量,g。

    参考Ghribi等[21]的方法并略作修改,精确称取0.5 g(m1)的TDF、SDF、IDF试样,置于10 mL量筒中,读取体积V1,加入5 mL蒸馏水,振荡混匀后,室温下静置24 h,试样吸水膨胀后读取体积V2

    (mL/g)=v2v1m1

    式中:m1是TDF、SDF、IDF初始样品的质量,g;v1是将TDF、SDF、IDF样品置于量筒后的体积,mL;v2是TDF、SDF、IDF样品吸水膨胀后的体积,mL。

    参考Wang等[22]的方法并略作修改,精确称取1 g(m1)的TDF、SDF、IDF试样,置于50 mL离心管中,加入花生油,振荡混匀后,室温下静置12 h,5000 r/min离心20 min,弃掉上层油脂后称质量(m2)。

    (g/g)=m2m1m1

    式中:m1是TDF、SDF、IDF初始样品的质量,g;m2是TDF、SDF、IDF持油后样品的质量,g。

    参考任庆等[23]的方法并略作修改,精确配制质量浓度0.1 g/mL的TDF、SDF、IDF试样溶液,取10 mL加入到离心管中,读取液体总高度h1,再向离心管中加入5 mL花生油,均质成乳化液,离心后读取离心管中乳化层的高度h2;将离心管置于85 ℃水浴锅内保持30 min,离心后再次读取离心管中的乳化层高度h3

    (%)=h2h1×100
    (%)=h3h2×100

    式中:h1是TDF、SDF、IDF初始试样溶液置于离心管的高度;h2是均质、离心后乳化层的高度;h3是水浴、离心后乳化层的高度。

    采用Design-Expert 10.0.7设计响应面、Origin 2018绘图和IBM SPSS Statistics 24进行数据处理,并设置3次平行试验,以平均值±标准差(Mean±SD)表示,P<0.05表示具有显著性差异。

    图2可知,随液料比增加,TDF和IDF得率总体呈先上升后下降的趋势,这可能是由于在一定范围内液料比的增加会增大膳食纤维与蒸馏水间的接触面积,从而提高IDF的溶出率,故IDF得率增加;而当液料比大于15 mL/g时,IDF得率逐渐下降,这可能是由于IDF溶出速率已经接近于零,溶液体系达到平衡状态,如果继续增加液料比,反而可能水解溶出的IDF[24]。SDF得率在液料比25 mL/g时达到最大值,但无显著性差异(P>0.05),而当液料比为15 mL/g时,TDF和IDF得率有显著性差异(P<0.05),因此在保证试验效果、节约水资源以及乙醇成本的综合考虑下,确定15 mL/g为最佳液料比。

    图  2  液料比对广西长寿人群食谱中膳食纤维复合体得率的影响
    注:不同小写字母表示同一指标差异显著(P<0.05),图3~图6图8同。
    Figure  2.  Effect of liquid-solid ratio on the yield of dietary fiber complex in the diet of longevity people in Guangxi

    图3可知,TDF和IDF得率随提取时间的延长,呈现先上升后下降的趋势,90 min时达到最大值,这可能是由于90 min时,酶与底物反应接近于反应完全,如果继续增加提取时间,反而会导致IDF发生轻度水解[25]。SDF得率随提取时间的延长而增大,90 min之后呈现下降的趋势,原因可能是SDF提取存在一个最适时间,超过最适时间后容易引起多糖分子的降解。当提取时间为90 min时,TDF、SDF得率有显著性差异(P<0.05),而IDF无显著性差异(P>0.05),因此综合考虑,确定90 min为最佳提取时间。

    图  3  提取时间对广西长寿人群食谱中膳食纤维复合体得率的影响
    Figure  3.  Effect of extraction time on the yield of dietary fiber complex in the diet of longevity people in Guangxi

    图4可知,随提取温度升高,TDF、IDF以及SDF得率不断增大,80 ℃时达到最大值,继续升高温度,得率出现下降的趋势,原因可能是酶反应与最适温度有关,80 ℃时酶的活性达到了最大值,得率也达到最大值,如果继续提高温度,酶的活性会降低,且温度过高会导致纤维物质的降解。当提取温度为80 ℃时,TDF、IDF和SDF得率有显著性差异(P<0.05),因此综合考虑,确定80 ℃为最佳提取温度。

    图  4  提取温度对广西长寿人群食谱中膳食纤维复合体得率的影响
    Figure  4.  Effect of extraction temperature on the yield of dietary fiber complex in the diet of longevity people in Guangxi

    图5可知,随α-淀粉酶添加量增加,TDF和IDF得率先增大后减小,当添加量为0.3%时,得率达到最大值,这可能是由于在一定范围内α-淀粉酶添加量的增加促使淀粉充分酶解,IDF得率随之达到最大值,如果继续增加α-淀粉酶,酶的活性会趋于饱和[26],IDF得率也会随之下降。而SDF得率在添加量为0.4%时,得率达到最大值,且有显著性差异(P<0.05),当α-淀粉酶添加量为0.3%时,TDF和IDF得率均有显著性差异(P<0.05),因此综合考虑节约酶的使用量,确定0.3%为最佳α-淀粉酶添加量。

    图  5  α-淀粉酶添加量对广西长寿人群食谱中膳食纤维复合体得率的影响
    Figure  5.  Effect of α-amylase addition on the yield of dietary fiber complex in the diet of longevity people in Guangxi

    图6可知,随超声波功率增大,TDF、IDF和SDF得率总体呈先上升后下降的趋势,原因可能是超声处理会产生空化和机械作用[27],在一定超声波功率范围内,纤维物质会快速溶出,如果继续增大超声波功率,将会破坏纤维网状结构,随之被降解掉。当超声波功率为240 W时,TDF、IDF和SDF得率有显著性差异(P<0.05),因此综合考虑,确定240 W为最佳超声波功率。

    图  6  超声波功率对广西长寿人群食谱中膳食纤维复合体得率的影响
    Figure  6.  Effect of ultrasonic power on the yield of dietary fiber complex in the diet of longevity people in Guangxi

    在单因素实验基础上,根据5个因素对TDF得率产生影响的显著性大小,选择α-淀粉酶添加量、超声波功率、液料比和提取温度为因素,TDF得率为响应值进行试验,Box-Behnken试验设计及结果见表2

    表  2  Box-Behnken试验设计及结果
    Table  2.  Experimental design and results for Box-Behnken
    实验号A
    B
    CD
    TDF
    得率(%)
    10−10−152.21
    200−1153.04
    3000058.53
    410−1060.21
    5000064.64
    6001159.56
    7−101052.42
    8101049.66
    901−1053.56
    10−100−149.50
    11000064.04
    1200−1−151.04
    13000063.41
    14010−150.13
    151−10055.11
    16110054.20
    170−11052.81
    18100−163.87
    190−1−1048.14
    20010158.18
    21−1−10055.42
    220−10158.79
    23−100153.19
    24001−147.72
    25100−153.33
    26000066.48
    27011052.03
    28−10−1044.48
    29−110052.36
    下载: 导出CSV 
    | 显示表格

    表3可看出,模型极显著(P<0.01),失拟项不显著(P>0.05),表明该回归模型可以较好地拟合预测值与实测值,适用于对广西长寿人群食谱中膳食纤维复合体提取工艺进行分析和预测。决定系数R2为0.9140,R2Adj=0.8280,表明该回归模型可以解释91.4%的响应值,且模型具有较好的拟合度,可以准确分析和预测提取结果。用Design-Expert 10.0.7软件对表2数据进行多元回归拟合,得到TDF得率(Y)对自变量α-淀粉酶添加量(A)、超声波功率(B)、液料比(C)、提取温度(D)的二次多项回归模型:Y=63.42+2.42A−0.17B+0.31C+3.56D+0.54AB−4.62AC+1.71AD−1.55BC+0.37BD+2.46CD−4.61A2−4.72B2−7.00C2−3.76D2F值可以判定各变量对响应值影响的显著性大小,根据显著性大小决定主次顺序,结果表明:A、D、AC、A2、B2、C2、D2达到极显著水平(P<0.01),其他均不显著(P>0.05),各因素对响应值影响排序为:提取温度>α-淀粉酶添加量>液料比>超声波功率。

    表  3  响应面方差分析
    Table  3.  Analysis of variance for response surface analysis
    方差来源平方和自由度均方FP显著性
    模型819.991458.5710.63<0.0001**
    A α-淀粉酶添加量70.13170.1312.730.0031**
    B 超声波功率0.3410.340.0620.8074
    C 液料比1.1611.160.210.6535
    D 提取温度151.941151.9427.580.0001**
    AB1.1611.160.210.6540
    AC85.47185.4715.510.0015**
    AD11.73111.732.130.1666
    BC9.6119.611.740.2078
    BD0.5410.540.0980.7588
    CD24.21124.214.390.0547
    A2138.131138.1325.070.0002**
    B2144.251144.2526.180.0002**
    C2317.801317.8057.68< 0.0001**
    D291.87191.8716.670.0011**
    残差77.14145.51
    失拟项41.99104.200.480.8433不显著
    净误差35.1548.79
    总离差897.1328
    注:P<0.05,差异显著*;P<0.01,差异极显著**。
    下载: 导出CSV 
    | 显示表格

    等高线图和响应面图均可以直观地判断交互作用的显著程度,等高线形状越接近椭圆形且越密集,响应面越陡峭,说明交互作用越显著。与其他两因素之间的响应曲面与等高线图相比,AC响应面更陡峭,等高线的形状更接近椭圆形,因此判断AC交互作用更显著。由此交互项的影响从大到小排列依次为:AC>CD>AD>BC>AB>BD,如图7所示,AC交互作用显著,其余不显著,这与响应面方差分析结果一致。

    图  7  α-淀粉酶添加量与液料比交互作用对TDF得率影响的响应面和等高线图
    Figure  7.  Response surface and contour map of the interaction between α-amylase addition and liquid-solid ratio on the yield of TDF

    根据单因素实验结果以及响应面模型计算得出,广西长寿人群食谱中膳食纤维复合体(DFC)的最优提取工艺是:α-淀粉酶添加量0.34%,超声波功率242.04 W,液料比14.98 mL/g,提取温度85.50 ℃,此时TDF最大得率为64.85%。为了试验操作的可行性,将提取条件设置为α-淀粉酶添加量0.3%,超声波功率242 W,液料比15 mL/g,提取温度86 ℃,平行3次试验,测得TDF得率为(63.90%±1.60%),与理论预测值基本一致。因此经响应面模型计算得出的最优条件可靠,能真实地反映超声波辅助酶法对TDF得率的影响。

    图8可知,DFC与优化后的DFC中主要成分是纤维素、半纤维素和木质素,且经超声波辅助酶解提取后得到的总膳食纤维中蛋白质、脂肪等杂质含量分别由提取前的(2.66%±0.12%)、(5.31%±0.14%)降至提取后的(1.90%±0.08%)、(1.77%±0.26%),总膳食纤维含量有显著提高(P<0.05),从(39.71%±1.17%)增加到了(64.83%±0.28%),即其纯度提高了约25.12%。8种广西长寿人群食谱中膳食纤维复合体提取前总膳食纤维含量(39.71%±1.17%)高于甘薯渣(24.06%)[28],且优化后,总膳食纤维含量明显高于红枣渣(26.5%左右)[29],而目前对于膳食纤维的研究大多集中于单一膳食纤维,关于广西长寿人群食谱中膳食纤维复合体特性的研究还未见有报道。

    图  8  工艺优化前后提取的DFC基本组成成分分析
    Figure  8.  Analysis of basic components of DFC extracted before and after process optimization

    为了衡量DFC品质的好坏,对其进行理化性质分析,结果如表4所示,超声波辅助酶法制备的TDF与膳食纤维粉相比较,其持水力、膨胀力、持油力、乳化能力及乳化稳定性均有明显提高,分别提高了5.36 g/g,2.83 mL/g,3.56 g/g,21.81%,36.8%,且分离后的SDF持水力、膨胀力、乳化能力及乳化稳定性均优于IDF,持油力则相反。制备后的DFC中IDF持油力为(9.06±0.23)g/g。对于膳食纤维的持油力,丁政宇等[30]报道黄精渣为(3.97±0.04)g/g、Lou等[31]报道牛蒡根粉为(8.50±0.36)g/g,比本研究结果差别明显;SDF持水力和膨胀力分别为(10.08±0.28)g/g、(8.24±0.31)mL/g,明显高于黄秋葵(5.61 g/g、3.35 mL/g)[32]、木瓜皮(5.26 g/g、4.54 mL/g)[33]、稻壳(2.58 g/g、3.27 mL/g)[34]的有关研究,且DFC的SDF具有较好的乳化性和乳化稳定性,这表明DFC具有较好的工艺学属性,有利于其制品的后续开发。研究发现用等比的苦荞麦粉、绿豆粉和燕麦粉制备的抗性淀粉,对小鼠具有明显的减肥降脂作用[35],绿豆、苦荞、藜麦复合抗性淀粉多元复合RS有助于降低高糖高脂模型小鼠的血糖血脂水平,提高肠道内乙酸、丙酸、丁酸的含量[36]。本研究的DFC则是8种膳食纤维原料按照不同的比例复合,因此可以预测DFC具有良好的潜在益生价值,这也从侧面反映了广西长寿人群食谱对人体健康的促进和保障作用。

    表  4  DFC的理化性质
    Table  4.  Physicochemical properties of DFC
    样品持水力(g/g)膨胀力(mL/g)持油力(g/g)乳化能力(%)乳化稳定性(%)
    DFC2.42±0.21d2.95±0.09d1.50±0.28d9.42±0.65d26.11±2.79d
    TDF7.78±0.25b5.78±0.44b5.06±0.14b31.23±0.91b62.91±0.63b
    IDF5.18±0.16c4.74±0.18c9.06±0.23a16.59±0.42c41.68±1.26c
    SDF10.08±0.28a8.24±0.31a3.74±0.32c58.04±1.23a90.75±1.32a
    注:同列不同小写字母表示差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    本研究采用超声波辅助酶法提取优化广西巴马长寿地区食谱中膳食纤维复合体(DFC),通过单因素实验和响应面试验探究膳食纤维最佳提取工艺。结果表明:在α-淀粉酶添加量0.3%,超声波功率242 W,液料比15 mL/g,提取温度86 ℃时,TDF最大得率为63.90%;基本成分结果表明:DFC与优化后的DFC中主要成分是纤维素、半纤维素和木质素,且优化后TDF含量有显著提高(P<0.05);理化性质结果表明:优化后的DFC持水力、膨胀力、持油力、乳化能力和乳化稳定性分别提高了5.36 g/g,2.83 mL/g,3.56 g/g,21.81%,36.8%,DFC中SDF持水力、膨胀力、乳化能力及乳化稳定性均优于IDF,持油力则相反。以上结果表明DFC是一种优质的膳食纤维原料,在开发广西长寿地区特色功能性产品方面具有广阔的应用前景,关于其进一步的益生效果分析和广泛应用,还需要更深入地探究其结构、性质及其他功能效果之间的联系。

  • 图  1   广西长寿地区代表性膳食纤维提取工艺流程图

    Figure  1.   Process flow chart of representative dietary fiber extraction in longevity area of Guangxi

    图  2   液料比对广西长寿人群食谱中膳食纤维复合体得率的影响

    注:不同小写字母表示同一指标差异显著(P<0.05),图3~图6图8同。

    Figure  2.   Effect of liquid-solid ratio on the yield of dietary fiber complex in the diet of longevity people in Guangxi

    图  3   提取时间对广西长寿人群食谱中膳食纤维复合体得率的影响

    Figure  3.   Effect of extraction time on the yield of dietary fiber complex in the diet of longevity people in Guangxi

    图  4   提取温度对广西长寿人群食谱中膳食纤维复合体得率的影响

    Figure  4.   Effect of extraction temperature on the yield of dietary fiber complex in the diet of longevity people in Guangxi

    图  5   α-淀粉酶添加量对广西长寿人群食谱中膳食纤维复合体得率的影响

    Figure  5.   Effect of α-amylase addition on the yield of dietary fiber complex in the diet of longevity people in Guangxi

    图  6   超声波功率对广西长寿人群食谱中膳食纤维复合体得率的影响

    Figure  6.   Effect of ultrasonic power on the yield of dietary fiber complex in the diet of longevity people in Guangxi

    图  7   α-淀粉酶添加量与液料比交互作用对TDF得率影响的响应面和等高线图

    Figure  7.   Response surface and contour map of the interaction between α-amylase addition and liquid-solid ratio on the yield of TDF

    图  8   工艺优化前后提取的DFC基本组成成分分析

    Figure  8.   Analysis of basic components of DFC extracted before and after process optimization

    表  1   响应面试验因素与水平

    Table  1   Factors and levels used for response surface design

    水平因素
    A α-淀粉酶添加量(%)B超声波功率(W)C液料比(mL/g)D提取温度(℃)
    −10.21601070
    00.32401580
    10.43202090
    下载: 导出CSV

    表  2   Box-Behnken试验设计及结果

    Table  2   Experimental design and results for Box-Behnken

    实验号A
    B
    CD
    TDF
    得率(%)
    10−10−152.21
    200−1153.04
    3000058.53
    410−1060.21
    5000064.64
    6001159.56
    7−101052.42
    8101049.66
    901−1053.56
    10−100−149.50
    11000064.04
    1200−1−151.04
    13000063.41
    14010−150.13
    151−10055.11
    16110054.20
    170−11052.81
    18100−163.87
    190−1−1048.14
    20010158.18
    21−1−10055.42
    220−10158.79
    23−100153.19
    24001−147.72
    25100−153.33
    26000066.48
    27011052.03
    28−10−1044.48
    29−110052.36
    下载: 导出CSV

    表  3   响应面方差分析

    Table  3   Analysis of variance for response surface analysis

    方差来源平方和自由度均方FP显著性
    模型819.991458.5710.63<0.0001**
    A α-淀粉酶添加量70.13170.1312.730.0031**
    B 超声波功率0.3410.340.0620.8074
    C 液料比1.1611.160.210.6535
    D 提取温度151.941151.9427.580.0001**
    AB1.1611.160.210.6540
    AC85.47185.4715.510.0015**
    AD11.73111.732.130.1666
    BC9.6119.611.740.2078
    BD0.5410.540.0980.7588
    CD24.21124.214.390.0547
    A2138.131138.1325.070.0002**
    B2144.251144.2526.180.0002**
    C2317.801317.8057.68< 0.0001**
    D291.87191.8716.670.0011**
    残差77.14145.51
    失拟项41.99104.200.480.8433不显著
    净误差35.1548.79
    总离差897.1328
    注:P<0.05,差异显著*;P<0.01,差异极显著**。
    下载: 导出CSV

    表  4   DFC的理化性质

    Table  4   Physicochemical properties of DFC

    样品持水力(g/g)膨胀力(mL/g)持油力(g/g)乳化能力(%)乳化稳定性(%)
    DFC2.42±0.21d2.95±0.09d1.50±0.28d9.42±0.65d26.11±2.79d
    TDF7.78±0.25b5.78±0.44b5.06±0.14b31.23±0.91b62.91±0.63b
    IDF5.18±0.16c4.74±0.18c9.06±0.23a16.59±0.42c41.68±1.26c
    SDF10.08±0.28a8.24±0.31a3.74±0.32c58.04±1.23a90.75±1.32a
    注:同列不同小写字母表示差异显著(P<0.05)。
    下载: 导出CSV
  • [1] 蔡达. 广西长寿之乡老人饮食与代谢特征及其相关性研究[D]. 南宁: 广西大学, 2017.

    CAI D. A correlation between diet and metabolic characteristics of healthy elderly people from longevous region in Guangxi province[D]. Nanning: Guangxi University, 2017.

    [2] 王芳. 广西巴马长寿老人肠道菌群及其与膳食纤维多糖饮食关联性研究[D]. 南宁: 广西大学, 2015.

    WANG F. Chinese centenarians gut microbiota and its correlation with high-fiber diet[D]. Nanning: Guangxi University, 2015.

    [3] 宋奇, 艾连中, 鲁红岩, 等. 巴马长寿饮食模式在衰老小鼠模型中的抗氧化应激效果[J]. 食品科学,2018,39(19):147−153. [SONG Q, AI L Z, LU H Y, et al. Effect of Bama longevity dietary patterns on antioxidant stress in a mouse model of aging[J]. Food Science,2018,39(19):147−153. doi: 10.7506/spkx1002-6630-201819023

    SONG Q, AI L Z, LU H Y, et al. Effect of Bama longevity dietary patterns on antioxidant stress in a mouse model of aging[J]. Food Science, 2018, 39(19): 147-153. doi: 10.7506/spkx1002-6630-201819023

    [4] 黄燕婷, 梅丽华, 潘海博, 等. 巴马长寿特征饮食模式对自然衰老小鼠的抗衰老效果[J]. 食品科学,2021,42(5):137−144. [HUANG Y T, MEI L H, PAN H B, et al. Anti-aging effect of Bama longevity characteristic dietary patterns in naturally aging mice[J]. Food Science,2021,42(5):137−144. doi: 10.7506/spkx1002-6630-20200229-328

    HUANG Y T, MEI L H, PAN H B, et al. Anti-aging effect of Bama longevity characteristic dietary patterns in naturally aging mice[J]. Food Science, 2021, 42(5): 137-144. doi: 10.7506/spkx1002-6630-20200229-328

    [5]

    VERSPREET J, DAMEN B, BROEKAERT W F, et al. A critical look at prebiotics within the dietary fiber concept[J]. Annual Review of Food Science and Technology,2016,7(1):167−190. doi: 10.1146/annurev-food-081315-032749

    [6]

    YANG Y Y, MA S, WANG X X, et al. Modification and application of dietary fiber in foods[J]. Journal of Chemistry,2017,2017:1−8.

    [7]

    SURYANTI V, KUSUMANINGSIH T, RUMINGTYAS Y S. Physicochemical properties of dietary fibers from artocarpus camansi fruit[J]. IOP Conference Series-Materials Science and Engineering, 2017, 193(1): 012012.

    [8] 千春录, 王兢业, 戴露婷, 等. 水芹膳食纤维提取工艺优化及其特性[J]. 食品工业科技,2017,38(22):119−124. [QIAN C L, WANG J Y, DAI L T, et al. Optimization of extraction technology of dietary fiber from Oenanthe javanica and its character[J]. Science and Technology of Food Industry,2017,38(22):119−124.

    QIAN C L, WANG J Y, DAI L T, et al. Optimization of extraction technology of dietary fiber from Oenanthe javanica and its character[J]. Science and Technology of Food Industry, 2017, 38(22): 119-124.

    [9]

    JIA F J, YANG S F, MA Y Y, et al. Extraction optimization and constipation-relieving activity of dietary fiber from Auricularia polytricha[J]. Food Bioscience, 2020, 33.

    [10]

    KUREK M A, KARP S, WYRWISZ J, et al. Physicochemical properties of dietary fibers extracted from gluten-free sources: Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum)[J]. Food Hydrocolloids,2018,85:321−330. doi: 10.1016/j.foodhyd.2018.07.021

    [11] 聂梦琳, 饶川艳, 莫明规, 等. 广西火麻膳食纤维提取及其特性研究[J]. 食品安全质量检测学报,2020,11(17):6188−6195. [NIE M L, RAO C Y, MO M G, et al. Study on the extraction of Guangxi hemp dietary fiber and its characteristics[J]. Journal of Food Safety and Quality,2020,11(17):6188−6195.

    NIE M L, RAO C Y, MO M G, et al. Study on the extraction of Guangxi hemp dietary fiber and its characteristics[J]. Journal of Food Safety and Quality, 2020, 11(17): 6188-6195.

    [12] 饶川艳, 聂梦琳, 莫明规, 等. 广西巴马长寿人群饮食中7种膳食纤维成分及抗氧化活性分析[J]. 食品安全质量检测学报,2020,11(19):6990−6999. [RAO C Y, NIE M L, MO M G, et al. Determination of 7 dietary fiber components and antioxidant effects in diet of Guangxi Bama longevity population[J]. Journal of Food Safety and Quality,2020,11(19):6990−6999.

    RAO C Y, NIE M L, MO M G, et al. Determination of 7 dietary fiber components and antioxidant effects in diet of Guangxi Bama longevity population[J]. Journal of Food Safety and Quality, 2020, 11(19), 6990-6999.

    [13] 国家卫生和计划生育委员会. GB 5009.3-2016 食品安全国家标准 食品中水分的测定[S]. 北京: 中国标准出版社, 2016: 1−2.

    National Health and Family Planning Commission. GB 5009.3-2016 National Food Safety Standard Determination of moisture in food[S]. Beijing: China Standards Press, 2016: 1−2.

    [14] 国家卫生和计划生育委员会. GB 5009.4-2016 食品安全国家标准 食品中灰分的测定[S]. 北京: 中国标准出版社, 2016: 1−4.

    National Health and Family Planning Commission. GB 5009.4-2016 National Standard for Food Safety Determination of ash in food[S]. Beijing: China Standards Press, 2016: 1−4.

    [15] 国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016: 1−3.

    State Food and Drug Administration, State Health and Family Planning Commission. GB 5009.5-2016 National Food Safety Standard Determination of protein in food[S]. Beijing: China Standards Press, 2016: 1−3.

    [16] 国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 5009.6-2016 食品安全国家标准食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016: 1−5.

    State Food and Drug Administration, State Health and Family Planning Commission. GB 5009.6-2016 National Food Safety Standard Determination of fat in foods[S]. Beijing: China Standards Press, 2016: 1−5.

    [17]

    MA M M, MU T H, SUN H N, et al. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.)[J]. Food Chemistry,2015,179:270−277. doi: 10.1016/j.foodchem.2015.01.136

    [18]

    CAPEK P, HRIBALOVA V, SVANDOVA E, et al. Characterization of immunomodulatory polysaccharides from Salvia officinalis L.[J]. International Journal of Biological Macromolecules,2003,33(1):113−119.

    [19] 国家卫生和计划生育委员会. GB 5009.88-2014 食品安全国家标准 食品中膳食纤维的测定[S]. 北京: 中国标准出版社, 2014: 1−7.

    National Health and Family Planning Commission. GB 5009.88-2014 National Food Safety Standard Determination of dietary fiber in foods[S]. Beijing: China Standards Press, 2014: 1−7.

    [20]

    HE Y Y, LI W, ZHANG X Y, et al. Physicochemical, functional, and microstructural properties of modified insoluble dietary fiber extracted from rose pomace[J]. Journal of Food Science and Technology,2020,57(4):1421−1429. doi: 10.1007/s13197-019-04177-8

    [21]

    GHRIBI A M, SILA A, GAFSI I M, et al. Structural, functional, and ACE inhibitory properties of water-soluble polysaccharides from chickpea flours[J]. International Journal of Biological Macromolecules,2015,75:276−282. doi: 10.1016/j.ijbiomac.2015.01.037

    [22]

    WANG L, XU H G, YUAN F, et al. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking[J]. Food Chemistry,2015,185:90−98. doi: 10.1016/j.foodchem.2015.03.112

    [23] 任庆, 孙波, 于敬鑫, 等. 白菜渣可溶性膳食纤维酸法提取工艺优化及理化性质测定[J]. 食品科学,2015,36(10):70−75. [REN Q, SUN B, YU J X, et al. Optimization of acid extraction and physicochemical properties of soluble dietary fiber from Chinese cabbage residue[J]. Food Science,2015,36(10):70−75. doi: 10.7506/spkx1002-6630-201510014

    REN Q, SUN B, YU J X, et al. Optimization of acid extraction and physicochemical properties of soluble dietary fiber from Chinese cabbage residue[J]. Food Science, 2015, 36(10): 70-75. doi: 10.7506/spkx1002-6630-201510014

    [24] 李琦, 曾凡坤, 华蓉, 等. 响应面法优化超声辅助提取韭菜根不溶性膳食纤维[J]. 食品与发酵工业,2021,47(3):128−134. [LI Q, ZENG F K, HUA R, et al. Optimization of ultrasound-assisted extraction of insoluble dietary fiber from chive roots by response surface method[J]. Food and Fermentation Industries,2021,47(3):128−134.

    LI Q, ZENG F K, HUA R, et al. Optimization of ultrasound-assisted extraction of insoluble dietary fiber from chive roots by response surface method[J]. Food and Fermentation Industries, 2021, 47(3): 128 -134.

    [25] 张荣, 任清, 罗宇. 小米可溶性膳食纤维提取及其理化性质分析[J]. 食品科学,2014,35(2):69−74. [ZHANG R, REN Q, LUO Y. Extraction of soluble dietary fiber from foxtail millet and analysis of its physical and chemical properties[J]. Food Science,2014,35(2):69−74. doi: 10.7506/spkx1002-6630-201402013

    ZHANG R, REN Q, LUO Y. Extraction of soluble dietary fiber from foxtail millet and analysis of its physical and chemical properties[J]. Food Science, 2014, 35(2): 69-74. doi: 10.7506/spkx1002-6630-201402013

    [26] 马子晔, 何孟欣, 孙剑锋, 等. 超声波辅助提取马铃薯全粉加工副产物中膳食纤维[J]. 食品研究与开发,2020,41(22):79−85. [MA Z Y, HE M X, SUN J F, et al. Ultrasonic-assisted extraction of dietary fiber from by-products of whole potato processing[J]. Food Research and Development,2020,41(22):79−85.

    MA Z Y, HE M X, SUN J F, et al. Ultrasonic-assisted extraction of dietary fiber from by-products of whole potato processing[J]. Food Research and Development, 2020, 41(22): 79-85.

    [27]

    MA M M, MU T H. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin[J]. Food Chemistry,2016,194:237−246. doi: 10.1016/j.foodchem.2015.07.095

    [28] 赖爱萍, 陆国权, 王 颖. 超声波辅助酶法制备甘薯渣膳食纤维工艺研究[J]. 中国粮油学报,2015,30(8):99−104. [LAI A P, LU G Q, WANG Y. Ultrasonic -assisted enzymatic extraction technology of dietary fiber from sweetpotato residue[J]. Journal of the Chinese Cereals and Oils Association,2015,30(8):99−104. doi: 10.3969/j.issn.1003-0174.2015.08.019

    LAI A P, LU G Q, WANG Y. Ultrasonic -assisted enzymatic extraction technology of dietary fiber from sweetpotato residue[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(8): 99-104. doi: 10.3969/j.issn.1003-0174.2015.08.019

    [29] 张孟凡, 岳丽, 敬思群, 等. 超声辅助-酶解协同作用提取红枣渣膳食纤维及其促消化作用[J]. 食品工业科技,2019,40(7):205−212. [ZHANG M F, YUE L, JING S Q, et al. Extraction of dietary fiber from red jujube residue by ultrasonic-enzymatic hydrolysis synergistic action and its promoting digestion function[J]. Science and Technology of Food Industry,2019,40(7):205−212.

    ZHANG M F, YUE L, JING S Q, et al. Extraction of dietary fiber from red jujube residue by ultrasonic-enzymatic hydrolysis synergistic action and its promoting digestion function[J]. Science and Technology of Food Industry, 2019, 40(7): 205-212.

    [30] 丁政宇, 张士凯, 何子杨, 等. 响应面优化黄精渣不溶性膳食纤维酶法提取工艺及其结构表征[J]. 食品工业科技,2021, 42(20): 157-163.

    DING Z Y, ZHANG S K, HE Z Y, et al. Response surface optimization enzymatic extraction and characterization of insoluble dietary fiber from polygonatum waste[J]. Science and Technology of Food Industry, 2021, 42(20): 157-163.

    [31]

    LOU Z X, WANG H X, WANG D X, et al. Preparation of inulin and phenols-rich dietary fibre powder from burdock root[J]. Carbohydrate Polymers,2009,78(4):666−671. doi: 10.1016/j.carbpol.2009.05.029

    [32] 梁文康, 苏平, 魏丹. 复合酶法提取黄秋葵可溶性膳食纤维的工艺优化及其理化特性、结构表征[J]. 食品工业科技,2020,41(17):199−205. [LIANG W K, SU P, WEI D. Optimization techniques for the extraction of soluble dietary fiber from okra with complex enzymes and its physicochemical properties and structure characterization[J]. Science and Technology of Food Industry,2020,41(17):199−205.

    LIANG W K, SU P, WEI D. Optimization techniques for the extraction of soluble dietary fiber from okra with complex enzymes and its physicochemical properties and structure characterization[J]. Science and Technology of Food Industry, 2020, 41(17): 199-205.

    [33]

    ZHANG W M, ZENG G L, PAN Y G, et al. Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction[J]. Carbohydrate Polymers,2017,172:102−112. doi: 10.1016/j.carbpol.2017.05.030

    [34]

    JACOMETTI G A, MELLO L R P F, NASCIMENTO P H A, et al. The physicochemical properties of fibrous residues from the agro industry[J]. LWT-Food Science and Technology,2015,62(1):138−143. doi: 10.1016/j.lwt.2015.01.044

    [35] 吕明彧, 刘家宏, 陈彦君, 等. 多元复合抗性淀粉减肥功效评价[J]. 食品科技,2021,46(1):251−257. [LÜ M Y, LIU J H, CHEN Y J, et al. Evaluation of multi-element compound resistant starch for weight loss[J]. Food Science and Technology,2021,46(1):251−257.

    LYU M Y, LIU J H, CHEN Y J, et al. Evaluation of multi-element compound resistant starch for weight loss[J]. Food Science and Technology, 2021, 46(1), 251-257.

    [36] 陈彦君, 刘家宏, 张 翔, 等. 多元复合抗性淀粉对高糖高脂模型小鼠代谢调节作用及机制[J]. 食品工业科技, 2021, 42(19): 357-362.

    CHEN Y J, LIU J H, ZHANG X, et al. Metabolic regulation and mechanism of multi-component resistant starch on high-sugar and high-fat model mice[J]. Science and Technology of Food Industry, 2021, 42(19): 357-362.

图(8)  /  表(4)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  29
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-17
  • 网络出版日期:  2022-05-07
  • 刊出日期:  2022-07-14

目录

/

返回文章
返回