Determination of 18 Sulfonamide Drugs Residues in Lateolabrax japonicus by High Performance Liquid Chromatography-Tandem Mass Spectrometry with Enhanced Solid Phase Extraction
-
摘要: 建立了增强型脂质去除固相萃取净化高效液相色谱串联质谱法同时检测鲈鱼中18种磺胺类药物残留的分析方法。鱼肉样品经1%甲酸乙腈提取,增强型脂质去除固相萃取柱进行净化,用CNW Athena C18-WP色谱柱(2.1 mm×100 mm,3 μm)进行分离,以甲醇和0.1%甲酸水溶液为流动相梯度洗脱,ESI正离子模式扫描,采用多反应监测模式测定,内标法定量。结果表明:18种磺胺类药物在5~200 ng/mL范围内具有良好的线性关系(r≥0.9962),方法的检出限和定量限分别为0.11~0.47和0.37~1.57 μg/kg。在3个不同浓度添加水平下,样品回收率在73.30%~116.9%之间,相对标准偏差为0.29%~7.74%(n=6)。该方法操作简单,准确快速,灵敏度高,可用于鲈鱼中多种磺胺类药物残留的检测。
-
关键词:
- 增强型固相萃取 /
- 鲈鱼 /
- 磺胺类药物 /
- 高效液相色谱串联质谱法
Abstract: A high-performance liquid chromatography-tandem mass spectrometry method was developed for simultaneous determination of 18 sulfonamide drugs residues in fish. The samples were extracted by 1% formic acid acetonitrile and the extracts were purified on enhanced solid-phase extraction column. The 18 sulfonamide drugs were analyzed by CNW Athena C18-WP column (2.1 mm×100 mm, 3 μm) using methanol and 0.1% formic acid as the mobile phases, the sample was analyzed under the multiple reaction monitoring mode with positive electrospray ionization(ESI+) and quantify by internal standard. The results showed that good linearities were obtained for the 18 sulfonamides in 5~200 ng/mL (r≥0.9962). The limits of detection and quantification for sulfonamides were 0.11~0.47 and 0.37~1.57 μg/kg, respectively. The recoveries at three concentrations ranged from 73.30%~116.9%, with the RSD from 0.29%~7.74% (n=6). The method was simple, accurate, rapid, and highly sensitive. The method was successfully used for measurement of multiple sulfanilamide drugs residues in fish. -
磺胺类药物(sulfonamides,SAS)是含有对氨基苯磺酰胺结构的人工合成的抗菌药物[1-2],因抗菌谱广[3]、抗菌效应强、成本低[4]以及化学性质稳定等优点而广泛应用于临床及畜牧业和养殖业[5-6]。然而,磺胺类药物在体内代谢缓慢,长期大量使用容易导致该类药物在动物体内残留,进一步通过食物链在人体内蓄积,引发肾毒性、胃肠道出血、再生障碍性贫血[7]、过敏反应、以及细菌耐药性和致癌性等[4,8-10],严重危害人类健康。许多国家对动物源性食品中磺胺类药物的最大残留量有明确规定,国际食品法典委员会(Codex Alimentarius Commission,CAS)规定动物源性食品中磺胺类药物最大残留量为100 μg/kg[11]。我国在GB31650-2019《食品安全国家标准 食品中兽药最大残留限量》中规定,除牛奶外,动物源性食品中磺胺类药物最大残留量为100 μg/kg[12]。值得注意的是,尽管多个国家和地区明确规定磺胺类药物的最大残留量,但农户为追求更高的商业价值,磺胺类药物的滥用现象仍然存在。因此,建立高效、准确、快速的磺胺类药物检测方法对食品安全至关重要。
目前,高效液相色谱-串联质谱法、毛细管电泳法、高效液相色谱法、放射性免疫法、免疫传感器法、酶联免疫吸附法和胶体金免疫层析法是磺胺类抗菌药物常用的检测方法[4,13],高效液相色谱-串联质谱法因具有灵敏度高、准确性好等优点,是目前动物源性食品中抗生素残留最主要的检测方法。样品前处理方法直接影响检测结果,磺胺类药物常用的提取溶剂为乙腈、二氯甲烷或混合溶剂,在提取溶剂中加入酸或碱可增加提取效果。QuEChERS净化法[14]、固相萃取法[15-16]、固相微萃取法、基质固相分散法[17]、加压液体萃取法、免疫亲和色谱法[18]和液液萃取法[19]是常用的提取方法。动物源性食品常含有大量脂肪、蛋白质等大分子化合物,对样品检测干扰较大,传统的前处理方法操作复杂、耗时长、溶剂消耗大,提取液中较高含量的脂肪和蛋白质仍然是其主要缺点[19],新型增强型脂质去除净化柱(Captiva EMR-Lipid)通过体积排阻和疏水作用,可有效地去除脂质,最大程度地减少分析物的流失,方法的可靠性和耐用性显著提高。目前增强型脂质去除固相萃取净化柱在动物源性食品中磺胺类药物检测中应用较少。
本研究拟采用新型增强型脂质去除固相萃取柱结合高效液相色谱-串联质谱法建立鲈鱼中18种磺胺类抗菌药物高效、灵敏、快速的检测方法,旨在为鲈鱼等动物源性食品中磺胺类抗菌药物的快速检测提供新的依据和技术支撑。
1. 材料与方法
1.1 材料与仪器
大口黑鲈鱼样品 购于超市;磺胺醋酰、磺胺对甲氧嘧啶、磺胺吡啶、磺胺间甲氧嘧啶、磺胺二甲嘧啶、磺胺甲噻二唑、磺胺噻唑、磺胺氯哒嗪、磺胺甲噁唑、磺胺异噁唑、磺胺嘧啶、磺胺喹恶啉、磺胺间二甲氧嘧啶、磺胺甲基嘧啶、磺胺邻二甲氧嘧啶、磺胺苯吡唑、苯甲酰磺胺(浓度100 μg/mL) 天津阿尔塔科技有限公司;甲氧苄啶(浓度100 μg/mL) 北京坛墨质检科技有限公司;2种内标(磺胺间二甲氧嘧啶-D6和磺胺邻二甲氧嘧啶-D3) 纯度≥98.9%,上海安谱璀世标准技术服务有限公司;甲醇 色谱纯,武汉弗顿控股有限公司;乙酸乙酯 色谱纯,美国Thermo Fisher Scientific公司;乙腈 色谱纯,美国Honeywell公司;甲酸铵 色谱纯,德国CNW公司;甲酸 分析纯,广东光华科技股份有限公司;氯化钠、无水硫酸钠 分析纯,国药集团化学试剂有限公司;实验用水 为超纯水。
Agilent1200高效液相色谱仪配二元高压泵、自动进样器和柱温箱,Captiva EMR-Lipid 3 mL/300 mg固相萃取柱 美国Agilent公司; Poly-Sery MCX 3 mL/60 mg固相萃取柱、CNW Athena C18-WP色谱柱(2.1 mm×100 mm,3 μm) 德国CNW公司;AB SCIEX API 4000Q质谱联用系统配电喷雾离子源(ESI) 美国AB SCIEX公司;Neofuge1600R台式冷冻离心机 上海力申科学仪器有限公司;BS210S万分之一电子天平 德国赛多利斯仪器系统有限公司;DMT-2500涡旋振荡仪 杭州米欧仪器有限公司;HGC-24A氮气吹干仪 天津恒奥科技发展有限公司;KQ-500超声波清洗仪 昆山市超声仪器有限公司;优普超纯水制造系统 四川优普超纯科技有限公司;GM200刀式捣磨仪 德国RETSCH公司。
1.2 实验方法
1.2.1 标准品溶液的配制
准确移取18种磺胺标准储备液(100 μg/mL)各1 mL,用10%甲醇水溶液定容至10 mL,配制成浓度为10 μg/mL的标准中间液。移取各标准中间液1 mL,用10%甲醇水溶液配制成浓度为1 μg/mL的混合标准中间溶液。此外,配制1 μg/mL磺胺间二甲氧嘧啶-D6和磺胺邻二甲氧嘧啶-D3内标工作液。用10%甲醇水溶液逐级稀释配制成质量浓度为5、10、20、50、100、200 ng/mL的标准工作液,同时,在每个浓度点添加50 μL内标工作液,内标浓度为10 ng/mL。
1.2.2 样品前处理
取鲈鱼去鳞去鳃后,清洗干净取鲈鱼可食用肌肉部位,用刀式捣磨仪充分混匀粉碎。精密称取鱼肉样品5 g于50 mL离心管中,加入50 μL内标工作液,加入10 mL乙腈溶液(含1%甲酸),再涡旋2 min,加入1 g氯化钠和4 g无水硫酸钠,涡旋5 min,振荡30 min,超声15 min,8500 r/min离心5 min,取上清液于另一50 mL离心管。
取2 mL上清液过增强型脂质去除净化柱,重力自流,收集流出液,在45℃水浴下氮吹至近干,用10%甲醇水溶液定容至1 mL,过0.22 μm微孔滤膜, 待测。
1.2.3 色谱条件
色谱柱:CNW Athena C18-WP(2.1 mm×100 mm,3 μm);流动相A为0.1%甲酸水溶液,B为甲醇;流速为0.3 mL/min;进样体积为10 μL;柱温30 ℃;洗脱梯度:0~0.5 min,90% A;0.5~2.0 min,90%~60% A;2.0~11.0 min,60%~10% A;11.0~11.1 min,10%~90% A;11.1~15.0 min,90% A。
1.2.4 质谱条件
电喷雾离子源(electrospray ionization,ESI);多反应监测模式(multiple reaction monitoring,MRM);正离子模式;离子源温度(TEM):500 ℃;气帘气(CUR)10 psi;喷雾电压(IS)5000 V;雾化气40 psi;辅助气50 psi。其他参数见表1。
表 1 18种磺胺类药物和内标的质谱参数Table 1. Mass spectrum parameters of 18 sulfonamides and internal standard序号 化合物 母离子(m/z) 子离子(m/z) 去簇电压(V) 碰撞能(eV) 1 甲氧苄啶 291.1 230* 60 32 261 27 123.1 36 275.1 25 2 磺胺醋酰 215 156* 40 18 108 28 3 磺胺嘧啶 251 156* 55 23 108 31 4 磺胺吡啶 250 156* 50 25 184 55 22 92.1 26 108.1 30 5 磺胺噻唑 256 108.01 55 30 92 33 156.02* 50 22 108.02 27 6 磺胺甲基嘧啶 265 156.02* 55 25 172 22 108 32 7 磺胺二甲嘧啶 279 186* 55 20 156 23 108 28 8 磺胺对甲氧嘧啶 281 156.02* 55 25 108.02 28 9 磺胺间甲氧嘧啶 281 156.03* 55 23 108.03 29 10 磺胺甲噻二唑 271 156* 50 20 108 26 11 磺胺氯哒嗪 285 156* 50 23 108 34 12 磺胺甲噁唑 254 156* 50 23 108 25 13 磺胺异噁唑 268 156* 45 23 173 20 108.1 31 14 磺胺喹噁啉 301 156* 50 25 108 28 15 磺胺间二甲氧嘧啶 311 156.01* 65 31 108.01 35 16 磺胺邻二甲氧嘧啶 311 156.02* 65 28 108.02 32 17 磺胺苯吡唑 315.2 158.1 60 26 108.1 32 156.1* 28 18 苯甲酰磺胺 277 156* 55 23 108 28 19 磺胺间二甲氧嘧啶-D6 317 162.1* 44 30 156.1 33 251.1 29 20 磺胺邻二甲氧嘧啶-D3 314 156.1* 77 26 92.1 42 108.1 36 注:*为定量离子。 1.2.5 线性范围、检出限与定量限测定
配制质量浓度为5、10、20、50、100、200 ng/mL的标准工作液,分别以进样浓度X(ng/mL)和峰面积Y为横坐标和纵坐标,绘制标准曲线,并计算回归方程和相关系数。以信噪比为3(S/N=3)作为检出限(limits of detection,LOD),以信噪比为10(S/N=10)作为定量限(limits of quantification,LOQ)。
1.2.6 回收率与精密度实验
在阴性鱼肉样品中各添加质量浓度为5、10、50 μg/kg三水平的混合标准溶液,重复测定6次,计算各磺胺类药物回收率和精密度。
1.3 数据处理
采用统计软件Excel 2016、GraphPad Prism 6和Analyst 1.6.2软件对采集和检测结果进行数据处理分析。
2. 结果与分析
2.1 仪器条件的优化
2.1.1 色谱条件的优化
根据中华人民共和国国家标准GB/T 21316-2007[20]、农业农村部1025号公告-23-2008及文献报道,磺胺类化合物常用的流动相为乙腈[21-22]和甲醇[23-25]。此外,磺胺类化合物在酸性条件下具有较高的较稳定性和溶解性[19],因此,本研究考察了甲醇-水、乙腈-水、甲醇-0.1%甲酸水溶液和乙腈-0.1%甲酸水溶液对18种磺胺类化合物的分离度、峰形及灵敏度的影响。结果表明,以甲醇-水和乙腈-水为流动相时,化合物峰形差,对于待测组分中存在的同分异构体,基线无法实现完全分离。通过比较甲醇-0.1%甲酸水溶液和乙腈-0.1%甲酸水溶液发现,在水相中加入0.1%甲酸时,待测组分峰型尖锐,拖尾现象有所改善,同时甲酸有利于提高待测物在正离子扫描模式中的离子化效率,进一步提高了灵敏度。与乙腈相比,采用甲醇-0.1%甲酸水溶液梯度洗脱时,待测物可以实现良好的基线分离。
研究发现加入甲酸铵或乙酸铵可以稳定水相,改善峰型,对同分异构体实现更好的分离效果[13, 26],然而本研究通过比较甲醇-0.1%甲酸水溶液和甲醇-0.1%甲酸-5 mmol/L甲酸铵水溶液对待测物峰型及分离度的影响,发现加入甲酸铵对待测物峰型及分离度影响较小,因甲酸铵属于盐类化合物,考虑到试剂的消耗以及盐类流动相残留对色谱柱和仪器使用寿命的影响,因此本研究最终选择甲醇-0.1%甲酸水溶液为流动相。18种磺胺类化合物的总离子流图如图1。
2.1.2 质谱条件的优化
通过在离子源正负离子模式下对18种磺胺类药物扫描,发现18种磺胺类药物在正离子模式下响应较好,因此选择离子源正离子模式对磺胺类药物母离子全扫,确定目标化合物的母离子。再进一步通过二级质谱优化磺胺类抗菌药物的子离子、碰撞能以及去簇电压等参数(见表1)。采用优化后的色谱和质谱参数对18种磺胺类药物采集,如图1所示,结果表明化合物具有良好的分离度和灵敏度,优化的仪器参数可满足磺胺类抗菌药物分析。
2.2 前处理条件的优化
2.2.1 提取条件的优化
动物源性食品中磺胺类化合物常用的提取溶剂为乙酸乙酯、甲醇[27]和乙腈[28-31],本研究考察了上述3种溶剂的提取效果,结果表明,甲醇提取液含有白色浑浊物,且难以通过增强型脂质去除固相萃取净化柱。乙酸乙酯和乙腈提取液较澄清透明,且易通过增强型脂质去除固相萃取净化柱。与乙酸乙酯相比,采用乙腈作为提取溶剂时,回收率相对较高。此外,磺胺类化合物结构中因含有芳伯氨基而呈现弱碱性,研究发现,使用酸化有机试剂提取,磺胺类化合物溶解度更高,提取效率较好[18,31],与甲醇相比,乙腈极性与待测物极性相近,因动物源性食品中含有大量的脂肪和蛋白质,考虑到乙腈具有较好的蛋白沉淀效果,因此本研究在参考赵巧灵等、容裕棠等方法[8,14]基础上,最终选用1%甲酸乙腈为提取溶剂。
2.2.2 净化方式的优化
样品中大量的脂肪和蛋白质对检测结果影响较大,本研究在提取过程中加入氯化钠和无水硫酸钠,通过盐析使蛋白质沉淀,进一步减少了蛋白质对样品检测的干扰。尽管蛋白质可通过盐析后离心去除,而样品中的脂肪和磷脂等仍然会干扰待测物的检测,因此,本研究比较了新型Captiva EMR-Lipid固相萃取柱与Poly-Sery MCX固相萃取柱的净化效果及对磺胺类药物回收率的影响。由图2可以看出,采用Captiva EMR-Lipid固相萃取柱净化时,化合物回收率高,且相对稳定。此外,如图3所示,在净化过程中该净化柱无需活化、淋洗等过程,通过重力自流即可完成净化,极大地简化了样品前处理步骤,在减少有机试剂消耗的同时,有效缩短了净化时间,简便易用,省时省力,显著提高了方法的可操作性和便利性。该方法最大的优点在于采用的Captiva EMR-Lipid固相萃取柱结合了体积排阻和疏水相互作用,在高选择性和高效去除脂质的同时,能最大程度地减少待测物的流失,从而有利于改善方法的耐用性及可靠性。
2.3 方法学考察
2.3.1 线性范围、检出限与定量限
配制质量浓度为5、10、20、50、100、200 ng/mL的标准工作液,按照1.2步骤测定。以信噪比为3(S/N=3)作为检出限(LOD),以信噪比为10(S/N=10)作为定量限(LOQ)。结果表明,18种磺胺类抗菌药物在5~200 ng/mL范围内具有良好的线性关系,相关系数r≥0.9962,方法的检出限为0.11~0.47 μg/kg,定量限为0.37~1.57 μg/kg(见表2)。
表 2 18种磺胺类抗菌药物的线性范围、相关系数、回归方程、检出限和定量限Table 2. Linear range, correlation coefficients, regression equations, limits of detection and limits of quantification of 18 sulfonamides化合物 线性范围(ng/mL) 回归方程 相关系数(r) 检出限(μg/kg) 定量限(μg/kg) 甲氧苄啶 5~200 y=9.91×10−2x+9.52×10−1 0.9966 0.12 0.41 磺胺醋酰 5~200 y=1.22×10−1x+2.29×10−1 0.9995 0.41 1.37 磺胺嘧啶 5~200 y=9.99×10−2x+9.18×10−2 0.9995 0.15 0.50 磺胺吡啶 5~200 y=6.06×10−2x+5.69×10−1 0.9965 0.16 0.55 磺胺噻唑 5~200 y=3.08×10−2x-2.34×10−2 0.9989 0.24 0.80 磺胺甲基嘧啶 5~200 y=6.54×10−2x-8.95×10−3 0.9995 0.24 0.64 磺胺二甲嘧啶 5~200 y=8.67×10−2x+2.38×10−1 0.9995 0.46 1.56 磺胺对甲氧嘧啶 5~200 y=1.05×10−1x+4.25×10−2 0.9990 0.47 1.57 磺胺间甲氧嘧啶 5~200 y=4.14×10−2x-7.84×10−2 0.9979 0.32 1.07 磺胺甲噻二唑 5~200 y=9.27×10−2x-2.38×10−1 0.9979 0.11 0.37 磺胺氯哒嗪 5~200 y=7.21×10−2x-3.05×10−1 0.9971 0.16 0.54 磺胺甲噁唑 5~200 y=6.50×10−2x-1.33×10−1 0.9988 0.15 0.50 磺胺异噁唑 5~200 y=8.72×10−2x+1.90×10−1 0.9983 0.17 0.58 磺胺喹噁啉 5~200 y=2.18×10−1x+6.78×10−2 0.9962 0.18 0.60 磺胺间二甲氧嘧啶 5~200 y=3.15×10−1x+4.35×10−1 0.9967 0.41 1.37 磺胺邻二甲氧嘧啶 5~200 y=1.51×10−1x+3.51×10−1 0.9984 0.45 1.50 磺胺苯吡唑 5~200 y=1.67×10−2x-5.98×10−2 0.9971 0.40 1.33 苯甲酰磺胺 5~200 y=1.03×10−1x-4.52×10−1 0.9966 0.26 0.89 2.3.2 回收率与精密度
按1.2.6项下方法,向阴性鱼肉样品中分别添加浓度为5、10、50 μg/kg三水平的回收率试验,每个添加水平重复测定6次。结果表明,3个添加水平下鲈鱼样品中18种磺胺类抗菌药物的平均回收率为73.30%~116.9%,相对标准偏差为0.29%~7.74%。结果表明该方法回收率和精密度良好,可满足鲈鱼中18种磺胺类抗菌药物残留检测的需求(见表3)。
表 3 18种磺胺类抗菌药物在鱼肉中的回收率和相对标准偏差(RSD)(n=6)Table 3. Recoveries and relative standard deviations of 18sulfonamidesin fish meat (n=6)化合物 5 μg/kg 10 μg/kg 50 μg/kg 平均回收率(%) RSD
(%)平均回收率(%) RSD
(%)平均回收率(%) RSD
(%)甲氧苄啶 92.33 0.97 73.30 1.01 116.8 3.68 磺胺醋酰 86.83 1.01 90.15 0.79 92.30 7.74 磺胺嘧啶 86.33 0.89 85.25 1.26 89.23 3.08 磺胺吡啶 113.6 1.29 103.5 0.80 111.2 3.53 磺胺噻唑 104.2 1.02 106.7 1.04 97.97 2.70 磺胺甲基嘧啶 94.90 0.92 112.7 1.20 104.3 2.35 磺胺二甲嘧啶 93.47 1.10 105.3 1.15 116.9 3.99 磺胺对甲氧嘧啶 88.53 0.86 105.3 1.15 98.97 1.22 磺胺间甲氧嘧啶 99.60 1.13 107.5 1.14 99.50 2.53 磺胺甲噻二唑 91.40 0.51 99.50 0.52 99.40 2.92 磺胺氯哒嗪 90.80 1.21 103.0 1.21 104.3 2.53 磺胺甲噁唑 95.10 1.01 104.3 0.45 102.5 2.04 磺胺异噁唑 92.37 1.03 108.2 2.63 98.83 2.14 磺胺喹噁啉 86.03 1.36 86.48 2.44 84.03 2.85 磺胺间二甲氧嘧啶 84.90 2.30 100.9 1.57 99.67 2.70 磺胺邻二甲氧嘧啶 100.3 1.32 106.7 1.99 104.2 4.22 磺胺苯吡唑 86.53 1.21 98.48 0.29 101.7 3.42 苯甲酰磺胺 100.7 0.29 106.0 2.09 100.8 3.14 2.4 实际样品的测定
采用本研究建立的检测方法测定当地市售的15份鲈鱼样品,结果显示,18种磺胺类药物在15份鲈鱼样品均未检出。
3. 结论
本研究采用新型的增强型脂质去除净化柱结合高效液相色谱-串联质谱法以内标法定量,建立了鲈鱼样品中18种磺胺类药物残留的检测方法。通过对色谱、质谱条件以及提取溶剂和净化方式的优化,样品以1%甲酸乙腈提取,采用新型的增强型脂质去除固相萃取柱净化,可以有效去除脂质和蛋白质等干扰物,有效提高了回收率,达到了更好的净化效果。该方法操作简单,无需活化、淋洗和洗脱等过程,在减少有机试剂消耗的同时,省时省力,线性关系良好,回收率和精密度均可满足检测分析的需求,适用于以鲈鱼为主的多种水产品中磺胺类药物残留的检测分析。
-
表 1 18种磺胺类药物和内标的质谱参数
Table 1 Mass spectrum parameters of 18 sulfonamides and internal standard
序号 化合物 母离子(m/z) 子离子(m/z) 去簇电压(V) 碰撞能(eV) 1 甲氧苄啶 291.1 230* 60 32 261 27 123.1 36 275.1 25 2 磺胺醋酰 215 156* 40 18 108 28 3 磺胺嘧啶 251 156* 55 23 108 31 4 磺胺吡啶 250 156* 50 25 184 55 22 92.1 26 108.1 30 5 磺胺噻唑 256 108.01 55 30 92 33 156.02* 50 22 108.02 27 6 磺胺甲基嘧啶 265 156.02* 55 25 172 22 108 32 7 磺胺二甲嘧啶 279 186* 55 20 156 23 108 28 8 磺胺对甲氧嘧啶 281 156.02* 55 25 108.02 28 9 磺胺间甲氧嘧啶 281 156.03* 55 23 108.03 29 10 磺胺甲噻二唑 271 156* 50 20 108 26 11 磺胺氯哒嗪 285 156* 50 23 108 34 12 磺胺甲噁唑 254 156* 50 23 108 25 13 磺胺异噁唑 268 156* 45 23 173 20 108.1 31 14 磺胺喹噁啉 301 156* 50 25 108 28 15 磺胺间二甲氧嘧啶 311 156.01* 65 31 108.01 35 16 磺胺邻二甲氧嘧啶 311 156.02* 65 28 108.02 32 17 磺胺苯吡唑 315.2 158.1 60 26 108.1 32 156.1* 28 18 苯甲酰磺胺 277 156* 55 23 108 28 19 磺胺间二甲氧嘧啶-D6 317 162.1* 44 30 156.1 33 251.1 29 20 磺胺邻二甲氧嘧啶-D3 314 156.1* 77 26 92.1 42 108.1 36 注:*为定量离子。 表 2 18种磺胺类抗菌药物的线性范围、相关系数、回归方程、检出限和定量限
Table 2 Linear range, correlation coefficients, regression equations, limits of detection and limits of quantification of 18 sulfonamides
化合物 线性范围(ng/mL) 回归方程 相关系数(r) 检出限(μg/kg) 定量限(μg/kg) 甲氧苄啶 5~200 y=9.91×10−2x+9.52×10−1 0.9966 0.12 0.41 磺胺醋酰 5~200 y=1.22×10−1x+2.29×10−1 0.9995 0.41 1.37 磺胺嘧啶 5~200 y=9.99×10−2x+9.18×10−2 0.9995 0.15 0.50 磺胺吡啶 5~200 y=6.06×10−2x+5.69×10−1 0.9965 0.16 0.55 磺胺噻唑 5~200 y=3.08×10−2x-2.34×10−2 0.9989 0.24 0.80 磺胺甲基嘧啶 5~200 y=6.54×10−2x-8.95×10−3 0.9995 0.24 0.64 磺胺二甲嘧啶 5~200 y=8.67×10−2x+2.38×10−1 0.9995 0.46 1.56 磺胺对甲氧嘧啶 5~200 y=1.05×10−1x+4.25×10−2 0.9990 0.47 1.57 磺胺间甲氧嘧啶 5~200 y=4.14×10−2x-7.84×10−2 0.9979 0.32 1.07 磺胺甲噻二唑 5~200 y=9.27×10−2x-2.38×10−1 0.9979 0.11 0.37 磺胺氯哒嗪 5~200 y=7.21×10−2x-3.05×10−1 0.9971 0.16 0.54 磺胺甲噁唑 5~200 y=6.50×10−2x-1.33×10−1 0.9988 0.15 0.50 磺胺异噁唑 5~200 y=8.72×10−2x+1.90×10−1 0.9983 0.17 0.58 磺胺喹噁啉 5~200 y=2.18×10−1x+6.78×10−2 0.9962 0.18 0.60 磺胺间二甲氧嘧啶 5~200 y=3.15×10−1x+4.35×10−1 0.9967 0.41 1.37 磺胺邻二甲氧嘧啶 5~200 y=1.51×10−1x+3.51×10−1 0.9984 0.45 1.50 磺胺苯吡唑 5~200 y=1.67×10−2x-5.98×10−2 0.9971 0.40 1.33 苯甲酰磺胺 5~200 y=1.03×10−1x-4.52×10−1 0.9966 0.26 0.89 表 3 18种磺胺类抗菌药物在鱼肉中的回收率和相对标准偏差(RSD)(n=6)
Table 3 Recoveries and relative standard deviations of 18sulfonamidesin fish meat (n=6)
化合物 5 μg/kg 10 μg/kg 50 μg/kg 平均回收率(%) RSD
(%)平均回收率(%) RSD
(%)平均回收率(%) RSD
(%)甲氧苄啶 92.33 0.97 73.30 1.01 116.8 3.68 磺胺醋酰 86.83 1.01 90.15 0.79 92.30 7.74 磺胺嘧啶 86.33 0.89 85.25 1.26 89.23 3.08 磺胺吡啶 113.6 1.29 103.5 0.80 111.2 3.53 磺胺噻唑 104.2 1.02 106.7 1.04 97.97 2.70 磺胺甲基嘧啶 94.90 0.92 112.7 1.20 104.3 2.35 磺胺二甲嘧啶 93.47 1.10 105.3 1.15 116.9 3.99 磺胺对甲氧嘧啶 88.53 0.86 105.3 1.15 98.97 1.22 磺胺间甲氧嘧啶 99.60 1.13 107.5 1.14 99.50 2.53 磺胺甲噻二唑 91.40 0.51 99.50 0.52 99.40 2.92 磺胺氯哒嗪 90.80 1.21 103.0 1.21 104.3 2.53 磺胺甲噁唑 95.10 1.01 104.3 0.45 102.5 2.04 磺胺异噁唑 92.37 1.03 108.2 2.63 98.83 2.14 磺胺喹噁啉 86.03 1.36 86.48 2.44 84.03 2.85 磺胺间二甲氧嘧啶 84.90 2.30 100.9 1.57 99.67 2.70 磺胺邻二甲氧嘧啶 100.3 1.32 106.7 1.99 104.2 4.22 磺胺苯吡唑 86.53 1.21 98.48 0.29 101.7 3.42 苯甲酰磺胺 100.7 0.29 106.0 2.09 100.8 3.14 -
[1] 刘红, 曾建勇, 梁雪琪, 等. QuEChERS EMR-Lipid结合LC-MS/MS测定鸡蛋中磺胺类和喹诺酮类药物残留[J]. 现代食品科技,2018,34(9):235−243. [LIU H, ZENG J Y, LIANG X Q, et al. Determination of sulfonamides and quinolones in eggs by QuEChERS EMR-lipid and high performance liquid chromatography-tandem mass spectrometry[J]. Modern Food Science & Technology,2018,34(9):235−243. LIU H, ZENG J Y, LIANG X Q, et al. Determination of sulfonamides and quinolones in eggs by QuEChERS EMR-lipid and high performance liquid chromatography-tandem mass spectrometry[J]. Modern Food Science & Technology, 2018, 34(9): 235-243.
[2] AZEVEDO-BARBOSA H, DIAS D F, FRANCO L L, et al. From antibacterial to antitumour agents: A brief review on the chemical and medicinal aspects of sulfonamides[J]. Mini reviews in Medicinal Chemistry,2020,20(18):2052−2066.
[3] 张晓强, 张波, 方萍, 等. QuEChERS-超高效液相色谱-串联质谱法快速测定鱼肉中22种磺胺类药物残留[J]. 理化检验(化学分册),2015,51(3):369−374. [ZHANG XQ, ZHANG B, FANG P, et al. Rapid determination of 22 sulfonamide residues in fish by QuEChERS-UPLC-MS/MS[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis),2015,51(3):369−374. ZHANG XQ, ZHANG B, FANG P, et al. Rapid determination of 22 sulfonamide residues in fish by QuEChERS-UPLC-MS/MS[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2015, 51(3): 369-374.
[4] 刘桂英, 宋广军, 王召会, 等. 固相萃取-超高效液相色谱串联质谱法测定水产品中磺胺类药物残留[J]. 食品安全质量检测学报,2019,10(8):2240−2246. [LIU GY, SONG GJ, WANG ZH, et al. Determination of sulfonamide drugs residues in aquatic product by solid phase extraction-ultra performance liquid chromatography tandem mass spectrometry[J]. Food Safety and Quality Detection Technology,2019,10(8):2240−2246. doi: 10.3969/j.issn.2095-0381.2019.08.024 LIU GY, SONG GJ, WANG ZH, et al. Determination of sulfonamide drugs residues in aquatic product by solid phase extraction-ultra performance liquid chromatography tandem mass spectrometry[J]. Food Safety and Quality Detection Technology, 2019, 10(8): 2240-2246. doi: 10.3969/j.issn.2095-0381.2019.08.024
[5] CHANG C P, HOU P H, YANG W C, et al. Analytical detection of sulfonamides and organophosphorus insecticide residues in fish in Taiwan[J]. Molecules (Basel, Switzerland),2020,25(7):1501. doi: 10.3390/molecules25071501
[6] QIN L T, PANG X R, ZENG H H, et al. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China[J]. The Science of the Total Environment,2020,708:134552. doi: 10.1016/j.scitotenv.2019.134552
[7] 张梦雪, 赵义良, 苏青, 等. 水产品中磺胺类药物残留危害及常用检测方法[J]. 今日畜牧兽医,2019,35(7):79−80. [ZHANG M X, ZHAO Y L, SU Q, et al. Residual hazards of sulfonamides in aquatic products and common detection methods[J]. Today Animal Husbandry and Veterinary Medicine,2019,35(7):79−80. doi: 10.3969/j.issn.1673-4092.2019.07.069 ZHANG M X, ZHAO Y L, SU Q, et al. Residual hazards of sulfonamides in aquatic products and common detection methods[J]. Today Animal Husbandry and Veterinary Medicine, 2019, 35(7): 79-80. doi: 10.3969/j.issn.1673-4092.2019.07.069
[8] 赵巧灵, 张薇英, 汤海凤, 等. 快速溶剂萃取-超高效液相色谱-串联质谱法测定养殖鱼肌肉中18种磺胺类药物残留[J]. 食品科技,2019,44(12):335−341. [ZHAO Q L, ZHANG W Y, TANG H F, et al. Determination of 18 sulfonamides residues in cultured fish muscle with accelerated solvent extraction by high performance liquid chromatography-tandem mass spectrometry[J]. Food Science and Technology,2019,44(12):335−341. ZHAO Q L, ZHANG W Y, TANG H F, et al. Determination of 18 sulfonamides residues in cultured fish muscle with accelerated solvent extraction by high performance liquid chromatography-tandem mass spectrometry[J]. Food Science and Technology, 2019, 44(12): 335-341.
[9] 萨仁高娃. 磺胺类药物在饲料和畜产品中的残留危害[J]. 草食家畜,2021(4):63−66. [Sa RGW. Residue detection of sulfonamides in feed and animal products and harm evaluation[J]. Grass-feeding Livestock,2021(4):63−66. Sa RGW. Residue detection of sulfonamides in feed and animal products and harm evaluation[J]. Grass-feeding Livestock, 2021(4): 63-66.
[10] KHAN D A, KNOWLES S R, SHEAR N H. Sulfonamide hypersensitivity: Fact and fiction[J]. The Journal of Allergy and Clinical Immunology:In Practice,2019,7(7):2116−2123. doi: 10.1016/j.jaip.2019.05.034
[11] Codex Alimentarius Commission. CAC/MRL 2-2015 Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residue of veterinary drugs in foods[S].
[12] 农业农村部, 国家卫生健康委员会, 国家市场监督管理总局. GB 31650-2019 中国食品安全标准食品中兽药最大残留限量[S]. 北京: 中国标准出版社, 2019 Ministry of Agriculture and Rural Affairs Announcement, National Health Commission, State Administration for Market Regulation. GB 31650-2019 National Food Safety Standard. Maximum residue limits for veterinary drugs in foods[S]. Beijing: National Standards Press, 2019.
[13] 许晓辉, 徐惠昌, 王小乔, 等. 超高效液相色谱-串联质谱法测定海螵蛸中9种磺胺类药物残留量[J]. 化学试剂,2021,43(11):1546−1550. [XU X H, XU H C, WANG X Q, et al. Ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry for determination of nine kinds of sulfonamides residues in cuttlebone[J]. Chemical Reagents,2021,43(11):1546−1550. XU X H, XU H C, WANG X Q, et al. Ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry for determination of nine kinds of sulfonamides residues in cuttlebone[J]. Chemical Reagents, 2021, 43(11): 1546-1550.
[14] 容裕棠, 张宪臣, 张朋杰, 等. QuEChERS-超高效液相色谱-串联质谱法同时测定蜂蜜中21种磺胺类药物残留[J]. 食品与发酵工业,2018,44(4):226−233. [RONG Y T, ZHANG X C, ZHANG P J, et al. Simultaneous determination of twenty-one sulfonamides residues in honey by QuEChERS ultra liquid chromatography-mass mass spectrometry[J]. Food and Fermentation Industries,2018,44(4):226−233. RONG Y T, ZHANG X C, ZHANG P J, et al. Simultaneous determination of twenty-one sulfonamides residues in honey by QuEChERS ultra liquid chromatography-mass mass spectrometry[J]. Food and Fermentation Industries, 2018, 44(4): 226-233.
[15] 周瑞铮, 陈锦杭, 张树权, 等. 分散固相萃取结合液相色谱-串联质谱法测定淡水鱼中9种磺胺类和3种喹诺酮类药物残留量[J]. 食品安全质量检测学报,2021,12(17):6946−6952. [ZHOU R Z, CHEN J H, ZHANG S Q, et al. Determination of 9 kinds of sulfonamides and 3 kinds of quinolones residues in freshwater fish by dispersive solid phase extraction coupled with liquid chromatography-tandem mass spectrometry[J]. Food Safety and Quality Detection Technology,2021,12(17):6946−6952. ZHOU R Z, CHEN J H, ZHANG S Q, et al. Determination of 9 kinds of sulfonamides and 3 kinds of quinolones residues in freshwater fish by dispersive solid phase extraction coupled with liquid chromatography-tandem mass spectrometry[J]. Food Safety and Quality Detection Technology, 2021, 12(17): 6946-6952.
[16] 赵寅, 卢玉, 刘桂亮, 等. 固相萃取-高效液相色谱法同时测定牛奶中22种磺胺类兽药残留[J]. 分析试验室,2021:1−10. [ZHAO Y, LU Y, LIU G L, et al. Determination of 22 sulfonamides residues in milk by high performance liquid chromatography with solid phase extraction[J]. Chinese Journal of Analysis Laboratory,2021:1−10. ZHAO Y, LU Y, LIU G L, et al. Determination of 22 sulfonamides residues in milk by high performance liquid chromatography with solid phase extraction[J]. Chinese Journal of Analysis Laboratory, 2021: 1-10.
[17] ZHANG Y P, XU X, QI X, et al. Determination of sulfonamides in livers using matrix solid-phase dispersion extraction high-performance liquid chromatography[J]. Journal of Separation Science,2012,35(1):45−52. doi: 10.1002/jssc.201100600
[18] 杨杰程, 刘丁溪, 郭抗抗, 等. 动物性食品中磺胺类药物残留检测方法研究进展[J]. 畜牧与兽医,2019,51(6):134−139. [YANG JC, LIU DX, GUO KK, et al. Progress in research on detection of sulfonamide residues in animal derived foods[J]. Animal Husbandry and Veterinary Medicine,2019,51(6):134−139. YANG JC, LIU DX, GUO KK, et al. Progress in research on detection of sulfonamide residues in animal derived foods[J]. Animal Husbandry and Veterinary Medicine, 2019, 51(6): 134-139.
[19] 刘培勇, 张惠, 米之金, 等. 两步液液萃取-固相萃取净化结合高效液相色谱-串联质谱法测定猪肉中11种磺胺类兽药残留[J]. 色谱,2019,37(10):1098−1104. [LIU P Y, ZHANG H, MI Z J, et al. Determination of 11 sulfonamides in pork by two-step liquid-liquid extraction-solid phase extraction purification coupled with high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography,2019,37(10):1098−1104. doi: 10.3724/SP.J.1123.2019.04005 LIU P Y, ZHANG H, MI Z J, et al. Determination of 11 sulfonamides in pork by two-step liquid-liquid extraction-solid phase extraction purification coupled with high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2019, 37(10): 1098-1104. doi: 10.3724/SP.J.1123.2019.04005
[20] 国家标准化管理委员会, 国家质量监督检验检疫总局. GB/T 21316-2007 动物源性食品中磺胺类药物残留量的测定液相色谱-质谱/质谱法[S]. 北京: 国家标准出版社, 2007 National Standardization Management Committee, General Administration of Quality Supervision, Inspection and Quarantine. GB/T 21316-2007 Determination of sulfonamide residues in food of animal origin liquid chromatography-mass spectrometry/mass spectrometry[S]. Beijing: National Standards Press, 2007.
[21] WEN L, LIU L, WANG X, et al. Spherical mesoporous covalent organic framework as a solid-phase extraction adsorbent for the ultrasensitive determination of sulfonamides in food and water samples by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2020,1625:461275. doi: 10.1016/j.chroma.2020.461275
[22] ZHAO Y F, WU R, YU H, et al. Magnetic solid-phase extraction of sulfonamide antibiotics in water and animal-derived food samples using core-shell magnetite and molybdenum disulfide nanocomposite adsorbent[J]. Journal of Chromatography A,2020,1610:460543. doi: 10.1016/j.chroma.2019.460543
[23] YANG Y, QIU W Q, LI Y X, et al. Antibiotic residues in poultry food in Fujian Province of China[J]. Food Additives & Contaminants. Part B, Surveillance,2020,13(3):177−184.
[24] CHENG S, WEI Z, ZHIMING X, et al. Trace analysis and identification of 33 sulfonamides and sulfonamide potentiators in eggs by ultrahigh-performance liquid chromatography coupled with quadrupole-high-field orbitrap high-resolution mass spectrometry[J]. Analytical Methods:Advancing Methods and Applications,2021,13(38):4452−4460.
[25] FU L, ZHOU H, MIAO E M, et al. Functionalization of amino terminated carbon nanotubes with isocyanates for magnetic solid phase extraction of sulfonamides from milk and their subsequent determination by liquid chromatography-high resolution mass spectrometry[J]. Food Chemistry,2019,289:701−707. doi: 10.1016/j.foodchem.2019.03.097
[26] 高洁, 陈达炜, 丁宇琦, 等. 固相萃取-超高效液相色谱-串联质谱法测定畜产品中残留的22种磺胺类药物[J]. 中国食品卫生杂志,2018,30(1):28−34. [GAO J, CHEN D W, DING Y Q, et al. Determination of 22 sulfonamides in livestock products by ultra high performance liquid chromatography-tandem mass spectrometry coupled with solid phase extraction[J]. Chinese Journal of Food Hygiene,2018,30(1):28−34. GAO J, CHEN D W, DING Y Q, et al. Determination of 22 sulfonamides in livestock products by ultra high performance liquid chromatography-tandem mass spectrometry coupled with solid phase extraction[J]. Chinese Journal of Food Hygiene, 2018, 30(1): 28-34.
[27] DASENAKI M E, THOMAIDIS N S. Multi-residue determination of seventeen sulfonamides and five tetracyclines in fish tissue using a multi-stage LC-ESI-MS/MS approach based on advanced mass spectrometric techniques[J]. Analytica Chimica Acta,2010,672(1-2):93−102. doi: 10.1016/j.aca.2010.04.034
[28] 方灵, 韦航, 黄彪, 等. 超高效液相色谱-串联质谱法同时测定牛奶中38种抗生素残留[J]. 分析测试学报,2019,38(6):681−686,692. [FANG L, WEI H, HUANG B, et al. Simultaneous determination of 38 antibiotics residues in milk by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis,2019,38(6):681−686,692. doi: 10.3969/j.issn.1004-4957.2019.06.008 FANG L, WEI H, HUANG B, et al. Simultaneous determination of 38 antibiotics residues in milk by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2019, 38(6): 681-686, 692. doi: 10.3969/j.issn.1004-4957.2019.06.008
[29] ZHOU X, CHEN W Q, DING Y Q, et al. Rapid determination of sulfonamides in chicken using two-dimensional online cleanup mode with three columns coupled to liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences,2019,1114-1115:110−118. doi: 10.1016/j.jchromb.2019.03.015
[30] 杨坤, 刘桂琼, 管春成, 等. 通过型固相萃取净化-超高效液相色谱-串联质谱法检测鸡肉中23种磺胺类药物残留[J]. 食品工业科技,2021,42(18):284−291. [YANG K, LIU G Q, GUAN C C, et al. Determination of 23 sulfonamide drugs residues in chicken by ultra-performance liquid chromatography-tandem mass spectrometry with pass-through solid phase extraction[J]. Science and Technology of Food Industry,2021,42(18):284−291. YANG K, LIU G Q, GUAN C C, et al. Determination of 23 sulfonamide drugs residues in chicken by ultra-performance liquid chromatography-tandem mass spectrometry with pass-through solid phase extraction[J]. Science and Technology of Food Industry, 2021, 42(18): 284-291.
[31] 谢瑜杰, 李铁梅, 牛相涛, 等. 一步式QuEChERS方法结合高效液相色谱-串联质谱法测定牛肉中25种磺胺类药物残留[J]. 食品工业科技,2021,42(20):268−278. [XIE Y J, LI T M, NIU X T, et al. Determination of sulfonamides in beef by one step QuEChERS method combined with high performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry,2021,42(20):268−278. XIE Y J, LI T M, NIU X T, et al. Determination of sulfonamides in beef by one step QuEChERS method combined with high performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry, 2021, 42(20): 268-278.