Research Progress on Preparation and Application of Starch Nanoparticles
-
摘要: 淀粉是一种来源广泛、价格低廉、可再生可降解的生物聚合物。随着纳米技术的不断发展,淀粉纳米颗粒因其不同于天然淀粉的独特性质而备受关注,逐渐成为研究热点。本文介绍了不同来源淀粉的结构特点,概述了自上而下和自下而上制备淀粉纳米颗粒的方法和各种制备方法的优缺点,综述了淀粉纳米颗粒在Pickering乳液的稳定、复合材料的性能提升、靶向药物的运载和工业废水的吸附等方面发挥的作用,并对其在食品、工业、医学等领域的应用前景进行展望,旨在为淀粉纳米颗粒的研究提供理论依据。Abstract: Starch is a kind of biodegradable biopolymer with a wide range of sources and low price. With the development of nanotechnology, starch nanoparticles have become a research hotspot due to their unique properties different from native starch. In this paper, the structure characteristics of different sources of starch is introduced, the preparation of starch nanoparticles of top-down and bottom-up method and the advantages and disadvantages of various preparation methods are summarized, the effects of starch nanoparticles on Pickering emulsion stability, performance improvement of composite material, delivery of targeted drug and adsorption of industrial waste water are reviewed, and the application prospect of starch nanoparticles in food, industry, medicine and other fields is prospected in order to provide the theoretical basis for the research of starch nanoparticles.
-
Keywords:
- starch /
- nanoparticles /
- preparation /
- application
-
淀粉是一种天然、丰富、可再生、可降解,具有生物相容性的聚合物,主要来源是玉米、大米、小麦和土豆等[1]。淀粉作为储能物质存在于植物的茎、根和作物种子中,不同植物来源的淀粉在理化性质、功能、形态、热学、流变性等方面表现出差异。在食品中,其可作为增稠剂或膨胀剂等;在工业中,可作为粘合剂和胶凝剂等[2]。随着纳米技术的不断发展,可降解的天然高分子化合物逐渐成为研究的热点,与天然淀粉相比,淀粉纳米颗粒具有独特的理化特性和生物学特性,如更高的溶解度、更大的反应表面、更好的吸附能力和更快的生物渗透速率等[3],淀粉纳米颗粒广泛应用于食品、工业和医学等领域。本文对不同来源淀粉的结构、淀粉纳米颗粒的制备方法、制备方法的优缺点及其应用研究进行综述,为淀粉纳米颗粒的制备及未来应用提供参考。
1. 淀粉结构
淀粉是一种高分子聚合物,分子式为(C6H10O5)n,每个淀粉分子都由若干个葡萄糖组成,基本结构是α-D-吡喃葡萄糖。在结构上,淀粉主要由直链淀粉和支链淀粉组成,两者结合在一起,连续建立更高水平的复杂组装结构,包括结晶区和无定形区,生长环的同心壳,最后形成整个淀粉颗粒[4]。直链淀粉是α-D-吡喃葡萄糖单元通过α-1,4-糖苷键连接的微支链聚合物,化学结构如图1所示,分子量较小,只有少量的长支链,随机排列在淀粉颗粒表面,以单螺旋结构或以双螺旋形式通过氢键与支链淀粉相互作用,形成淀粉结构中的无定形区;而支链淀粉是在通过α-1,4-糖苷键连接的主链上,α-D-吡喃葡萄糖单元通过还原端的α-1,6-糖苷键连接组成的高支链聚合物,分子量较大,具有大量的短支链,垂直于颗粒表面排列,支链点沿主链周期性分布,形成淀粉结构中的结晶区[5-7]。
可以通过破坏淀粉结晶区的方法制备淀粉纳米颗粒,即支链淀粉从长直链淀粉脱支,形成无定形区的短直链淀粉,从而拓宽淀粉的应用。不同来源的淀粉中的直链和支链淀粉含量有所不同,一些常见淀粉的直链和支链淀粉含量如表1所示。
2. 淀粉纳米颗粒的制备方法
淀粉纳米颗粒是指粒径为1~1000 nm的固体或胶体颗粒[15],制备方法可分为“自上而下”和“自下而上”两种方法,如图2所示,自上而下法是通过水解、均质或研磨等方法将较大的颗粒分解,从而使其结构和尺寸细化,自下而上法是通过自组装或纳米沉淀等方法由原子或分子以可控的方式堆积而合成[16-17]。
2.1 自上而下法
2.1.1 超声波法
超声波法是通过在辐照过程中产生高能量振动,在水中引起产生气泡的空化崩塌和高剪切力使得颗粒崩解破碎,由于超声波法不添加化学试剂,不需要重复洗涤,具有快速且易于实现的优点,广泛应用于乳化、分散或研磨过程中的粒径减小[19]。Andrade等[20]以面包果淀粉为原料,采用超声波法制备淀粉纳米颗粒,经75 min超声处理后,淀粉纳米颗粒的平均粒径为145.65 nm。与天然淀粉相比,淀粉纳米颗粒的保水能力较低,聚合物链间的分子间相互作用较少,黏度较低。Haaj等[21]以蜡质玉米淀粉为原料,采用超声波法将淀粉悬浮液低温处理75 min后,形成粒径为30~100 nm的淀粉纳米颗粒,超声波严重破坏了支链淀粉的晶体结构,导致淀粉纳米颗粒结晶度降低或呈无定形状态。Boufi等[19]以玉米淀粉为原料在超声处理下制得淀粉纳米颗粒,在25 ℃超声处理75 min后,强烈破坏了淀粉的晶体结构,导致淀粉纳米颗粒具有高度的无定形特征。但超声波法产生的高能量容易使淀粉晶体结构畸变,形成非晶或低结晶度结构。
2.1.2 高压均质法
高压均质是通过压力快速变化导致液体受到剪切、湍流、空化等作用,不仅影响乳液稳定性,还影响其他加工成分,如颗粒、胶体或大分子等。高压均质法操作简便,广泛应用于化学、制药、食品和生物技术行业中物质的乳化、分散和混合[22]。Liu等[23]以玉米淀粉为原料,在207 MPa压力下,将5%的淀粉浆通过微流控器20次,随着均匀化次数增加,淀粉颗粒黏度增大,粒径分布变窄,粒径从3~6 μm减小到10~20 nm。Apostolidis等[24]采用高压均质法制备玉米淀粉纳米颗粒,在250 MPa下进行4次均匀化循环后,获得最小粒径为540 nm,支链淀粉结构被破坏。侯淑瑶等[25]以甘薯淀粉为原料,采用高压均质法制备纳米淀粉颗粒的得率可达46.12%,颗粒呈椭圆形,平均粒径为214.3 nm,与原淀粉相比化学结构不变,结晶度、热分解初始温度降低。但高压均质法只能对浓度较低的淀粉浆进行均质,各工序的产率较低,且不能保证在高压处理的高温作用下淀粉是否会发生反应。
2.1.3 球磨法
球磨法是利用摩擦、碰撞、撞击、剪切或其他机械作用来改变固体颗粒的晶体结构和性质,在球磨过程中,通过诱导颗粒破碎和非晶化,可增强化学反应性[26],其减少了化学试剂的使用,是一种纯粹的物理方法。Lin等[27]采用球磨法制备马铃薯淀粉纳米颗粒,研磨淀粉90 min后,获得平均粒径约为120 nm的淀粉纳米颗粒,颗粒表面粗糙,呈毛绒状,其结晶结构产生无定形和扭曲结构,吸水率和溶解度明显高于天然淀粉,吸附能力是天然淀粉的6倍。Ahmad等[28]采用行星球磨机对马蹄、菱角和莲藕淀粉进行机械处理,制备的马蹄、菱角和莲藕淀粉纳米颗粒的平均粒径为343、271和855 nm,球磨后其转变温度和黏度增加,剪切变稀行为减少。与天然淀粉相比,淀粉纳米颗粒具有更高的黏度和更好的热稳定性,表现出较高的吸水能力和较少的吸油能力。Dai等[29]采用行星式球磨机对糯玉米淀粉进行机械处理,当球磨时间为30 min时,可在保护结晶结构的同时损坏淀粉颗粒结构,球磨3 d后可观察到平均直径约为31 nm的圆形淀粉纳米颗粒,其制备的得率为19.3%。但球磨法由于需要采用高性能粉碎设备进行较长时间处理,产生较高能耗,在工业上受到很大限制。
2.1.4 反应挤出法
反应挤出法是一种将质量和热量输送操作与挤出机内同时发生的化学反应相结合的工艺,目的是修改现有聚合物性能或生产新的聚合物,在反应挤出操作中,根据反应物的物理形式和预期的反应顺序,反应物可以沿挤出机的不同点引入[30],反应挤出法效率高、成本低,但是技术难度大,反应具有专一性。Giezen等[31]采用反应挤出法在双螺杆挤出机中装载预混合淀粉和增塑剂,并添加可逆交联剂乙二醛,在较高温度、压力和剪切力的影响下,淀粉发生明显结构变化,被撕裂成粒径小于400 nm的淀粉纳米颗粒。Song等[32]以玉米淀粉为原料,采用反应挤出法,发现交联剂的加入可以显著增加剪切力,有利于颗粒粒径的减小,在75 ℃温度下添加交联剂制备的淀粉纳米颗粒的粒径为160 nm,挤压后的淀粉颗粒结晶度较低,黏度远低于原淀粉。反应挤出法是一种可以同时对淀粉纳米颗粒进行制备和改性的方法,常应用于制备新型的聚合物,在未来有很好的发展前景。
2.1.5 伽马射线辐照法
伽马射线辐射是一种通过交联、接枝和降解技术对高分子材料进行改性的方便工具,被认为是一种快速方便的修饰技术,可以将大分子断裂成更小的片段,并能够切割糖苷键[33]。伽玛射线辐射可以在淀粉分子上产生自由基,其可水解化学键,从而将淀粉大分子裂解为更小糊精片段[34]。Lamanna等[35]采用伽玛射线辐射法对木薯和糯玉米淀粉施加20 kGy剂量,辐照率为14 kGy/h,获得粒径约为20和30 nm的淀粉纳米颗粒,热特性表明,辐照后的淀粉纳米颗粒比原淀粉更容易产生热降解。伽玛射线辐射法简单、成本低、可行性高,但是可能会导致制备的淀粉纳米颗粒结晶结构消失。
2.1.6 酸水解法
酸水解法可选择性地侵蚀淀粉颗粒的无定形区域,由于结晶区域比无定形区域更耐酸水解,制备的淀粉纳米颗粒具有高结晶度,且制备工序简单[36]。Kim等[37]以3.16 mol/L H2SO4溶液,在40 ℃条件下,对不同含量和来源的淀粉进行7 d水解得到淀粉纳米颗粒,制备的淀粉纳米颗粒呈圆形或椭圆形,粒径为40~70 nm。Jeong等[38]采用盐酸和三偏磷酸钠交联酸水解蜡质大米淀粉,收集的淀粉纳米颗粒粒径在200~400 nm之间。Angellier等[39]采用酸水解法制备蜡质玉米淀粉纳米颗粒,研究了温度、酸浓度、蜡质玉米淀粉浓度、水解时间、搅拌速率对产率的影响,当温度为40 ℃、H2SO4溶液浓度为3.16 mol/L、淀粉浓度为14.69%、搅拌速率为100 r/min、水解时间为5 d时,淀粉纳米颗粒的产率可达到最大值,为15.7%。但酸水解法耗时长,对反应设备要求高,且产率较低。
2.1.7 微乳液法
微乳液是指各向同性、透明或半透明、热力学稳定的分散体,包括水、油、表面活性剂和助表面活性剂,由于其独特的性质,如超低的界面张力、大界面以及对非混溶液体的增溶能力等,已被广泛应用于各个领域[40]。微乳液法工艺简单、反应条件温和,制备的颗粒粒径小、分布均匀。Gang等[41]以天然玉米淀粉为原料,环氧氯丙烷为交联剂,在50 ℃下通过3 h的IL/O微乳液交联反应,淀粉的晶体结构被破坏,制备的淀粉纳米颗粒具有良好的球形、较小的尺寸和相对集中的尺寸分布,平均粒径为96.9 nm。Chin等[42]以天然西米淀粉为原料,采用微乳液法合成了平均粒径为83 nm的淀粉纳米颗粒。Ji等[43]以酸处理的颗粒淀粉为原料,环氧氯丙烷为交联剂,在W/IL微乳液中制备的淀粉纳米颗粒为球形颗粒,表面光滑、分散性好,平均直径为93.2 nm,粒径分布较为集中。但微乳液法的制备过程使用大量有机溶剂,易对环境造成污染。
2.2 自下而上法
2.2.1 纳米沉淀法
纳米沉淀法是将稀释的聚合物溶液不断加入溶剂中,通过增加溶剂的扩散,加入大量的非溶剂,或通过蒸发溶剂,导致过饱和、成核和核生长,导致聚合物沉淀,随后形成纳米级颗粒,因其操作工序简单快捷,能量消耗少、对设备要求不高而受到越来越多的关注[44-45]。Dong等[46]通过纳米沉淀法在热溶解的豌豆淀粉溶液中加入无水乙醇制得淀粉纳米颗粒。当淀粉浓度100 mg/mL,超声振幅60%,料液比1:1(v/v)时,制得淀粉纳米颗粒平均粒径约为130 nm,粒径分布较窄。Winarti等[47]以竹芋淀粉为原料,采用正丁醇络合沉淀法制备竹芋淀粉纳米颗粒,粒径约78.6~538.7 nm,呈现非颗粒形态且孔隙率较高,晶体结构和热性能发生改变。但纳米沉淀法常用有机溶剂作沉淀剂,可能会引起有机溶剂残留,造成环境污染。
2.2.2 酶解回生法
酶解回生法是利用淀粉分子的自组装特性,使短链葡聚糖从支链淀粉的α-1,6键脱支释放,其链长和分子流动性改变,通过氢键和疏水相互作用直接自组装成良好的聚集体,也称为酶解重结晶法或酶解自组装法[48-49]。Sun等[50]利用酶解回生法,采用普鲁兰酶对质量浓度为15%的蜡质玉米淀粉进行脱支和再结晶,制备了粒径60~120 nm、结晶度55.4%、产率达85%以上的淀粉纳米颗粒。Gong等[51]以糯米淀粉为原料,通过普鲁兰酶脱支处理得到短链聚葡萄糖,淀粉纳米颗粒的结晶度达到49.04%,粒径为30~50 nm。采用普鲁兰酶对淀粉进行脱支处理,酶解回生条件和颗粒粒径根据淀粉的来源及结构差异而略有不同,条件参数和颗粒粒径如表2所示。酶解回生法具有低成本、耗时短、易获得性、可再生性等优点,以及对设备要求不高,且易于扩大规模生产。
3. 淀粉纳米颗粒的应用
淀粉纳米颗粒的表面积较大,热稳定性、分散性和穿透性较好,克服了天然淀粉的局限性,不仅可以直接应用于食品,如作为食品乳化稳定剂、食品添加剂等,还可用作食品外部的材料,如复合材料、活性包装材料和抗菌膜等,以及在医药中用于药物传递载体和人体病原菌控制,在工业中用作吸附剂、填充剂和造纸的粘合剂等。
3.1 乳化稳定剂
乳状液是由两种不互溶的液体组成的体系,通常用表面活性剂来稳定,但可能会产生泡沫和毒性等问题[58]。以固体颗粒作为乳液的稳定剂,通常被称为Pickering乳液稳定剂,其在油水界面上聚集形成一个密集堆积的层,防止液滴之间接触,其毒性较表面活性剂低,成本低且回收较简单[59-60]。Ge等[61]发现粒径为100~220 nm的甘薯、玉米和木薯淀粉纳米颗粒具有接近中度润湿性,可促进油水界面的吸附,表现出较高的乳化稳定性,且没有液滴聚集。Shao等[62]制备了以芋头淀粉纳米颗粒为稳定剂的Pickering乳液,并对包封茶多酚的作用进行研究,淀粉纳米颗粒吸附在油水界面上,形成致密的界面层,该Pickering乳液能很好地包封茶多酚,保留率可达67%。Parisa等[63]制备了交联淀粉纳米颗粒并将其用于稳定葵花籽油水浸Pickering乳液,油滴平均直径减小,粒径分布变窄,在高pH条件下,交联淀粉纳米颗粒能使乳液水分散的稳定性保持数月。淀粉纳米颗粒作为Pickering乳液稳定剂,提高了乳液的稳定性,防止了乳液的聚结,与传统的表面活性剂不同,淀粉纳米颗粒可以不可逆地吸附在两种不相溶液体的界面上。
3.2 复合材料
纳米复合材料是指填充尺寸为纳米颗粒的材料,与传统复合材料相比,具有更好的机械性能、热性能和透明度,重量更轻,将淀粉纳米颗粒整合到天然或合成的聚合物基质中,可以提高复合材料的物理性能和生物降解性[3]。Wang等[64]采用苄基氯与淀粉纳米颗粒制备具有一定取代度的苄基淀粉纳米颗粒,将其与天然橡胶和二氧化硅共混制备复合材料。实验表明复合材料的力学性能和抗静电性能均得到显著提高。Mohseni等[65]将淀粉纳米颗粒和Ag纳米粒子制备成纳米复合材料掺入到玉米淀粉薄膜中,可以提高薄膜的拉伸性能和物理抗性。Silva等[66]研究淀粉纳米颗粒在热塑性淀粉复合薄膜中的掺入,提高了复合薄膜的杨氏模量和断裂伸长率,降低了复合薄膜的相对结晶度、水蒸气渗透性和薄膜的吸水率,证明淀粉纳米颗粒可以用作聚合物基质中的增强剂。淀粉纳米颗粒作为一种新型材料掺入到基质中,可以使复合材料具有优异的物理性能和耐化学性,且具有良好的生物可降解性,可作为医药、个人护理和化工等领域功能材料的载体、包装剂和增强剂。
3.3 药物载体
在药物传递过程中,使用大尺寸材料会面临生物利用度低、体内稳定性和溶解性差,肠道吸收、治疗效果和药物靶向作用差等问题。纳米颗粒能够穿透组织被细胞吸收,有效地将药物输送到作用靶点,提高药物的有效性、安全性,降低医疗成本[67]。Ahmad等[68]将白藜芦醇封装在淀粉纳米颗粒中,体外模拟结果显示,包封的白藜芦醇具有更高的抗肥胖和抗糖尿病活性,在纳米包埋体系中具有较好的营养价值。Han等[69]研究乙酰化玉米淀粉纳米颗粒封装布洛芬释放的影响,所制备的淀粉纳米颗粒粒径均匀,可用于疏水性药物的包封,并可获得缓控释药物载体。Nallasamy等[70]采用玉米淀粉纳米颗粒对阿育吠陀草药进行封装,其表现出较高的包封率和快速的药物释放,淀粉纳米颗粒包封后的阿育吠陀草药具有良好的自由基清除能力、还原能力和乙酰胆碱酯酶抑制活性。淀粉纳米颗粒作为药物传递载体,能够最大限度地减少药物的副作用,促进指定部位的药物释放,因其比表面积大,有望开发其运载多种药物和活性物质。
3.4 吸附剂
目前,全球的水污染达到前所未有的水平,工业产生的重金属离子如Pb2+和Cu2+等可以通过食物链积累,纺织行业产生的染料随废水排放,进入生态系统对人类健康和其他生物构成严重威胁[71-72]。淀粉纳米颗粒具有生物相容性、高表面体积比、高粘结强度和致密结构,适合用于对重金属离子和染料等进行吸附[73]。Awokoya等[74]制备了氧化苦山药淀粉纳米颗粒并用于模拟废水中Pb2+和Cd2+的吸附去除,吸附模型符合拟二级动力学和Freundlich等温模型,且对Pb2+和Cd2+的吸附为物理化学吸附。Guo等[75]以交联阳离子玉米淀粉颗粒对活性金黄色SNE染料进行吸附,当吸附时间为14.3 min,温度39 ℃,染料浓度100 mg/L,淀粉颗粒用量0.7 g/L时,最佳去除率为99.59%,对SNE的吸附符合准二级动力学和Langmuir等温吸附模型,且为单层吸附的吸热过程。Abidin等[76]制备氧化玉米淀粉纳米颗粒并用于对尿素的吸附去除,尿素吸附4 h后达到平衡,氧化淀粉纳米颗粒对尿素的最大吸附量为185.2 mg/g,去除率达95%,吸附机理符合Langmuir吸附等温线,吸附动力学符合拟二级模型。活性炭是去除水中有害物质最广泛使用的吸附剂,但价格昂贵,淀粉纳米颗粒的低成本、可再生性和无毒性,使其成为活性炭的合适替代品。
4. 结论与展望
淀粉纳米颗粒的制备方法较多,但大多存在一定的局限性,比如耗能高、对设备要求高、环保能力差和效率低等问题,违背了绿色发展的理念,未来可以尝试不同方法联合以及研发新的制备方法来实现淀粉纳米颗粒的绿色制备。淀粉纳米颗粒具有巨大的工业应用潜力,但目前还处于小规模的制备淀粉纳米颗粒阶段,应用领域仍不够宽广,如何高效、经济地实现淀粉纳米颗粒的大规模生产还需要进行更多的理论研究。随着制备方法的不断拓展和完善,淀粉纳米颗粒将会更广泛地应用于食品、工业和医学等领域。
-
表 1 常见淀粉的直链淀粉和支链淀粉含量
Table 1 Amylose and amylopectin contents of common starches
-
[1] NASROLLAHZADEH M, SAJJADI M, IRAVANI S, et al. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review[J]. Carbohydrate Polymers,2021,251:116986. doi: 10.1016/j.carbpol.2020.116986
[2] CHAVAN P, SINHMAR A, NEHRA M, et al. Impact on various properties of native starch after synthesis of starch nanoparticles: A review[J]. Food Chemistry,2021,364(15):130416.
[3] CAMPELO P H, SANTANA A S, CLERICI M. Starch nanoparticles: Production methods, structure, and properties for food applications[J]. Current Opinion in Food Science,2020,33:136−140. doi: 10.1016/j.cofs.2020.04.007
[4] ZHONG Y Y, QU J Z, LI Z H, et al. Rice starch multi-level structure and functional relationships[J]. Carbohydrate Polymers,2022,275:118777. doi: 10.1016/j.carbpol.2021.118777
[5] LUZI F, FORTUNATI E, MICHELE A D, et al. Nanostructured starch combined with hydroxytyrosol in poly (vinyl alcohol) based ternary films as active packaging system[J]. Carbohydrate Polymers,2018,193:239−248. doi: 10.1016/j.carbpol.2018.03.079
[6] LI H, GILBERT R G. Starch molecular structure: The basis for an improved understanding of cooked rice texture[J]. Carbohydrate Polymers,2018,195:9−17. doi: 10.1016/j.carbpol.2018.04.065
[7] PELISSARI F M, FERREIRA D C, LOUZADA L B, et al. Starch-based edible films and coatings: An eco-friendly alternative for food packaging[J]. Starches for Food Application,2019,10:359−420.
[8] XIE F, POLLET E, HALLEY P J, et al. Starch-based nano-biocomposites[J]. Progress in Polymer Science,2013,38(10-11):1590−1628. doi: 10.1016/j.progpolymsci.2013.05.002
[9] WANG L L, GONG Y, LI Y X, et al. Structure and properties of soft rice starch[J]. International Journal of Biological Macromolecules,2020,157:10−16. doi: 10.1016/j.ijbiomac.2020.04.138
[10] SHEVKANI K, SINGH N, BAJAJ R, et al. Wheat starch production, structure, functionality and applications: A review[J]. International Journal of Food Science & Technology,2016,52(1):38−58.
[11] ZAIDUL I S M, NORULAINI N, OMAR A K M, et al. Correlations of the composition, minerals, and RVA pasting properties of various potato starches[J]. Starch-Starke,2010,59(6):269−276.
[12] RIBOTTA P, PALAVECINO P M, PENCI M C, et al. Chemical composition and physical properties of sorghum flour prepared from different sorghum hybrids grown in Argentina[J]. Starch-Starke,2016,68(11-12):1055−1064. doi: 10.1002/star.201600111
[13] ZHANG D Q, MU T H, SUN H N. Effects of starch from five different botanical sources on the rheological and structural properties of starch-gluten model doughs[J]. Food Research International,2018,103:156−162. doi: 10.1016/j.foodres.2017.10.023
[14] JOSHI M, ALDRED P, MCKNIGHT S, et al. Physicochemical and functional characteristics of lentil starch[J]. Carbohydrate Polymers,2013,92(2):1484−1496. doi: 10.1016/j.carbpol.2012.10.035
[15] 孙锦, 蒋文龙, 何会泉, 等. 淀粉纳米颗粒的制备及其作为药物载体的研究进展[J]. 现代化工,2018,38(2):61−65. [SUN J, JIANG W L, HE H Q, et al. Preparation and research progress of starch nanoparticles as drug carriers[J]. Modern Chemical Industry,2018,38(2):61−65. doi: 10.16606/j.cnki.issn0253-4320.2018.02.014 [16] WANG H, FENG T, ZHUANG H, et al. A review on patents of starch nanoparticles: Preparation, applications, and development[J]. Recent Pat Food Nutr Agric,2018,9(1):23−30. doi: 10.2174/2212798410666180321101446
[17] KAUR J, KAUR G, SHARMA S, et al. Cereal starch nanoparticles-A prospective food additive: A review[J]. Critical Reviews in Food Science and Nutrition,2016,58(7):1097−1107.
[18] MORAN D, GUTIERREZ G, BLANCO-LOPE M C, et al. Synthesis of starch nanoparticles and their applications for bioactive compound encapsulation[J]. Applied Sciences,2021,11(10):4547. doi: 10.3390/app11104547
[19] BOUFI S, SIHEM B H, MAGNIN A, et al. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration[J]. Ultrasonics Sonochemistry,2018,41:327−336. doi: 10.1016/j.ultsonch.2017.09.033
[20] ANDRADE I H P, OTONI C G, AMORIM T S, et al. Ultrasound-assisted extraction of starch nanoparticles from breadfruit (Artocarpus altilis (Parkinson) Fosberg)[J]. Colloids and Surfaces:A Physicochemical and Engineering Aspects,2020,586:124277. doi: 10.1016/j.colsurfa.2019.124277
[21] HAAJ S B, MAGNIN A, PÉTRIER C, et al. Starch nanoparticles formation via high power ultrasonication[J]. Carbohydrate Polymers,2013,92(2):1625−1632. doi: 10.1016/j.carbpol.2012.11.022
[22] WEI B, CAI C, XU B, et al. Disruption and molecule degradation of waxy maize starch granules during high pressure homogenization process[J]. Food Chemistry,2017,240:165−173.
[23] LIU D G, WU Q L, CHEN H H, et al. Transitional properties of starch colloid with particle size reduction from micro-to nanometer[J]. Journal of Colloid and Interface Science,2009,339(1):117−124. doi: 10.1016/j.jcis.2009.07.035
[24] APOSTOLIDIS E, MANDALA I. Modification of resistant starch nanoparticles using high-pressure homogenization treatment[J]. Food Hydrocolloids,2020,103:150677.
[25] 侯淑瑶, 代养勇, 刘传富, 等. 高压均质法制备甘薯纳米淀粉及其表征[J]. 食品工业科技,2017,38(12):233−238, 242. [HOU S Y, DAI Y Y, LIU C F, et al. Preparation and characterization of sweet potato starch nanoparticles by high pressure homogenization[J]. Science and Technology of Food Industry,2017,38(12):233−238, 242. doi: 10.13386/j.issn1002-0306.2017.12.042 [26] LI N N, NIU M, ZHANG B J, et al. Effects of concurrent ball milling and octenyl succinylation on structure and physicochemical properties of starch[J]. Carbohydrate Polymers,2017,155:109−116. doi: 10.1016/j.carbpol.2016.08.063
[27] LIN H, QIN L Z, HONG H, et al. Preparation of starch nanoparticles via high-energy ball milling[J]. Journal of Nano Research,2016,40:174−179. doi: 10.4028/www.scientific.net/JNanoR.40.174
[28] AHMAD M, GANI A, MASOODI F A, et al. Influence of ball milling on the production of starch nanoparticles and its effect on structural, thermal and functional properties[J]. International Journal of Biological Macromolecules,2020,151:85−91. doi: 10.1016/j.ijbiomac.2020.02.139
[29] DAI L M, LI C W, ZHANG J, et al. Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis[J]. Carbohydrate Polymers,2018,180:122−127. doi: 10.1016/j.carbpol.2017.10.015
[30] TZOGANAKIS C, ZHU S. Reactive extrusion of polymers[J]. Encyclopedia of Polymer Science and Technology,2012,9(4):321−330.
[31] GIEZEN F E, JONGBOOM R, FEIL H, et al. Biopolymer nanoparticles: US, 6677386[P]. 2004-01-13.
[32] SONG D, THIO Y S, DENG Y. Starch nanoparticle formation via reactive extrusion and related mechanism study[J]. Carbohydrate Polymers,2011,85(1):208−214. doi: 10.1016/j.carbpol.2011.02.016
[33] SINGH S, SINGH N, EZEKIEL R, et al. Effects of gamma-irradiation on the morphological, structural, thermal and rheological properties of potato starches[J]. Carbohydrate Polymers,2011,83(4):1521−1528. doi: 10.1016/j.carbpol.2010.09.063
[34] YU Y, WANG J. Effect of γ-ray irradiation on starch granule structure and physicochemical properties of rice[J]. International Journal of Food Science & Technology,2007,40(2):297−303.
[35] LAMANNA M, MORALES N J, GARCÍA N, et al. Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler[J]. Carbohydrate Polymers,2013,97(1):90−97. doi: 10.1016/j.carbpol.2013.04.081
[36] TORRES F G, ARROYO J, TINEO C, et al. Tailoring the properties of native andean potato starch nanoparticles using acid and alkaline treatments[J]. Starch-Starke,2019,71(3-4):1800234. doi: 10.1002/star.201800234
[37] KIM H Y, JE H L, KIM J Y, et al. Characterization of nanoparticles prepared by acid hydrolysis of various starches[J]. Starch-Starke,2012,64(5-6):367−373.
[38] JEONG O, SHIN M. Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch[J]. Food Chemistry,2018,256:77−84. doi: 10.1016/j.foodchem.2018.02.098
[39] ANGELLIER H, CHOISNARD L, SONIA M B, et al. Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology[J]. Biomacromolecules,2004,5(4):1545−1551. doi: 10.1021/bm049914u
[40] WANG X, CHEN H, LUO Z, et al. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties[J]. Carbohydrate Polymers,2016,138:192−200. doi: 10.1016/j.carbpol.2015.11.006
[41] GANG Z, LUO Z, XIONG F. Preparation and characterization of starch nanoparticles in ionic liquid-in-oil microemulsions system[J]. Industrial Crops and Products,2014,52(1):105−110.
[42] CHIN S F, AZMAN A, PANG S C. Size controlled synthesis of starch nanoparticles by a microemulsion method[J]. Journal of Nanomaterials,2014,2014:1−7.
[43] JI G, LUO Z, XIAO Z, et al. Synthesis of starch nanoparticles in a novel microemulsion with two ILs substituting two phases[J]. Journal of Materials Science,2016,51(15):7085−7092. doi: 10.1007/s10853-016-9952-1
[44] BARERAS-URBINA C G, RAMíREZ-WONG B, LÓPEZ-AHUMADA G A, et al. Nano- and micro-particles by nanoprecipitation: Possible application in the food and agricultural industries[J]. International Journal of Food Properties,2016,19(9):1912−1923. doi: 10.1080/10942912.2015.1089279
[45] DONG Y, CHANG Y J, WANG Q, et al. Effect of operating conditions on size and morphology of amylose nanoparticles prepared by precipitation[J]. Starch-Starke,2015,67(3-4):365−372. doi: 10.1002/star.201400182
[46] DONG H M, CHEN L Y, ZHANG Q, et al. Optimization of processing parameters to produce nanoparticles prepared by rapid nanoprecipitation of pea starch[J]. Food Hydrocolloids,2021,121:106929. doi: 10.1016/j.foodhyd.2021.106929
[47] WINARTI C, SUNARTI T C, MANGUNWIDJAJA D, et al. Preparation of arrowroot starch nanoparticles by butanol-complex precipitation, and its as bioactive encapsulation matrix[J]. International Food Research Journal,2014,21(6):2207−2213.
[48] LUO K, LEE D H, ADRA H J, et al. Synthesis of monodisperse starch microparticles through molecular rearrangement of short-chain glucans from natural waxy maize starch[J]. Carbohydrate Polymers,2019,218:261−268. doi: 10.1016/j.carbpol.2019.05.001
[49] OH S M, LEE B H, SEO D H, et al. Starch nanoparticles prepared by enzymatic hydrolysis and self-assembly of short-chain glucans[J]. Food Science and Biotechnology,2020,29(5):585−598. doi: 10.1007/s10068-020-00768-w
[50] SUN Q J, LI G H, DAI L, et al. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation[J]. Food Chemistry,2014,162:223−228. doi: 10.1016/j.foodchem.2014.04.068
[51] GONG M, LI X J, XIONG L, et al. Retrogradation property of starch nanoparticles prepared by pullulanase and recrystallization[J]. Starch-Starke,2016,68(3-4):230−238. doi: 10.1002/star.201500115
[52] LIU C Z, JIANG S S, HAN Z J, et al. In vitro digestion of nanoscale starch particles and evolution of thermal, morphological, and structural characteristics[J]. Food Hydrocolloids,2016,61:344−350. doi: 10.1016/j.foodhyd.2016.05.039
[53] JIANG S S, DAI L, QIN Y, et al. Preparation and characterization of octenyl succinic anhydride modified taro starch nanoparticles[J]. Plos One,2016,11(2):e0150043. doi: 10.1371/journal.pone.0150043
[54] MIAO T T, XIONG K, JI N, et al. Resistant starch nanoparticles prepared from debranched starch by medium-temperature recrystallization[J]. International Journal of Biological Macromolecules,2020,155:598−604. doi: 10.1016/j.ijbiomac.2020.03.242
[55] LIN X, SUN S, WANG B, et al. Structural and physicochemical properties of lotus seed starch nanoparticles[J]. International Journal of Biological Macromolecules,2020,157:240−246. doi: 10.1016/j.ijbiomac.2020.04.155
[56] OH S M, PARK C S, KIM Y R, et al. Preparation and characterization of self-assembled short-chain glucan aggregates (SCGAs) derived from various starches[J]. Food Hydrocolloids,2020,114:106517.
[57] LUO K, PARK K H, LEE D H, et al. Self-assembly kinetics of debranched short-chain glucans from waxy maize starch to form spherical microparticles and its applications[J]. Colloids and Surfaces B: Biointerfaces,2019,176:352−359. doi: 10.1016/j.colsurfb.2019.01.002
[58] KO E B, KIM J Y. Application of starch nanoparticles as a stabilizer for Pickering emulsions: Effect of environmental factors and approach for enhancing its storage stability[J]. Food Hydrocolloids,2021,120(4):106984.
[59] LIANG E L, SIVA S P, YONG K H, et al. Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion[J]. Advances in Colloid and Interface Science,2020,277:102117. doi: 10.1016/j.cis.2020.102117
[60] GUIDA C, AGUIAR A C, CUNHA R L. Green techniques for starch modification to stabilize Pickering emulsions: A current review and future perspectives[J]. Current Opinion in Food Science,2021,38:52−61. doi: 10.1016/j.cofs.2020.10.017
[61] GE S J, XIONG L, LI M, et al. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size[J]. Food Chemistry,2017,234:339−347. doi: 10.1016/j.foodchem.2017.04.150
[62] SHAO P, ZHANG H Y, NIU B, et al. Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols[J]. International Journal of Biological Macromolecules,2018,118:2032−2039. doi: 10.1016/j.ijbiomac.2018.07.076
[63] PARISA S M, NIKFARJAM N, DENG Y L, et al. Pickering emulsion stabilized by amphiphilic pH-sensitive starch nanoparticles as therapeutic containers[J]. Colloids and Surfaces B: Biointerfaces,2019,181:244−251. doi: 10.1016/j.colsurfb.2019.05.046
[64] WANG C, PAN Z L, ZENG J L. Structure, morphology and properties of benzyl starch nanocrystals[J]. Arabian Journal for Science & Engineering,2014,39(9):6703−6710.
[65] MOHSENI M S, KHALILZADEH M A, MOHSENI M, et al. Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-starch nanocomposite and characterization of mechanical properties of the films[J]. Biocatalysis and Agricultural Biotechnology,2020,25:101569. doi: 10.1016/j.bcab.2020.101569
[66] SILVA N M C, CORREIA P R C, DRUZIAN J I, et al. PBAT/TPS composite films reinforced with starch nanoparticles produced by ultrasound[J]. International Journal of Polymer Science,2017,4308261:1−10.
[67] RODRIGUES A, EMEJE M. Recent applications of starch derivatives in nanodrug delivery[J]. Carbohydrate Polymers,2012,87(2):987−994. doi: 10.1016/j.carbpol.2011.09.044
[68] AHMAD M, GANI A. Ultrasonicated resveratrol loaded starch nanocapsules: Characterization, bioactivity and release behaviour under in vitro digestion[J]. Carbohydrate Polymers,2020,251:117111.
[69] HAN F, GAO C, LIU M. Fabrication and characterization of size-controlled starch-based nanoparticles as hydrophobic drug carriers[J]. Journal of Nanoscience and Nanotechnology,2013,13(10):6996−7007. doi: 10.1166/jnn.2013.7759
[70] NALLASAMY P, RAMALINGAM T, NOORUDDIN T, et al. Polyherbal drug loaded starch nanoparticles as promising drug delivery system: Antimicrobial, antibiofilm and neuroprotective studies[J]. Process Biochemistry,2020,92:355−364. doi: 10.1016/j.procbio.2020.01.026
[71] LI Q, CHEN B, LIN P, et al. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes[J]. International Journal of Phytoremediation,2016,18(2):103−109. doi: 10.1080/15226514.2014.898017
[72] GUO J, WANG J K, ZHENG G, et al. A TiO2/crosslinked carboxymethyl starch composite for high-efficiency adsorption and photodegradation of cationic golden yellow X-GL dye[J]. Environmental Science and Pollution Research,2019,26(24):24395−24406. doi: 10.1007/s11356-019-05685-y
[73] LIU Q, LI F, LU H, et al. Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles[J]. Food Chemistry,2018,242:256−263. doi: 10.1016/j.foodchem.2017.09.071
[74] AWOKOYA K N, ONINLA V O, BELLO D J. Synthesis of oxidized dioscorea dumentorum starch nanoparticles for the adsorption of lead (II) and cadmium (II) ions from waste water[J]. Environmental Nanotechnology, Monitoring & Management,2021,15:100440.
[75] GUO J, WANG J K, ZHENG G, et al. Optimization of the removal of reactive golden yellow SNE dye by cross-linked cationic starch and its adsorption properties[J]. Journal of Engineered Fibers and Fabrics,2019,14:1−13.
[76] ABIDIN M N Z, GOH P S, ISMAIL A F, et al. Highly adsorptive oxidized starch nanoparticles for efficient urea removal[J]. Carbohydrate Polymers,2018,201:257−263. doi: 10.1016/j.carbpol.2018.08.069