• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

物理协同酶法处理对青稞淀粉结构的影响

白婷, 李琳, 朱明霞, 靳玉龙, 王姗姗, 张玉红

白婷,李琳,朱明霞,等. 物理协同酶法处理对青稞淀粉结构的影响[J]. 食品工业科技,2024,45(3):40−46. doi: 10.13386/j.issn1002-0306.2023020084.
引用本文: 白婷,李琳,朱明霞,等. 物理协同酶法处理对青稞淀粉结构的影响[J]. 食品工业科技,2024,45(3):40−46. doi: 10.13386/j.issn1002-0306.2023020084.
BAI Ting, LI Lin, ZHU Mingxia, et al. Effects of Physical Synergistic Enzymatic Treatment on Structural Characteristics of Highland Barley Starch[J]. Science and Technology of Food Industry, 2024, 45(3): 40−46. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020084.
Citation: BAI Ting, LI Lin, ZHU Mingxia, et al. Effects of Physical Synergistic Enzymatic Treatment on Structural Characteristics of Highland Barley Starch[J]. Science and Technology of Food Industry, 2024, 45(3): 40−46. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020084.

物理协同酶法处理对青稞淀粉结构的影响

基金项目: 西藏特色食品资源高值化利用关键技术研发与应用示范(XZ202201ZD0001N);优质青稞食品加工技术试验研究与示范(XZDZKJ-2021-01);青稞精深加工技术创新平台运行费(XZNKYSPS-2023-C-045)。
详细信息
    作者简介:

    白婷(1988−),女,硕士,副研究员,研究方向:青稞综合加工利用,E-mail:18708015033@163.com

    通讯作者:

    张玉红(1975−),女,硕士,研究员,研究方向:青稞综合加工利用,E-mail:zhangyh75@126.com

  • 中图分类号: TS235.1

Effects of Physical Synergistic Enzymatic Treatment on Structural Characteristics of Highland Barley Starch

  • 摘要: 为研究物理协同酶法处理对青稞淀粉结构特性的影响,采用超声、压热协同普鲁兰酶对青稞淀粉进行处理,测定了处理后样品的颗粒形貌、晶体结构、官能团结构、粒径大小。试验结果表明,处理可以提高抗性淀粉和直链淀粉含量,降低支链淀粉的含量。改性处理使青稞淀粉颗粒的原始结构遭到了严重破坏,呈现出团状结构,表面粗糙,布满褶皱、裂纹和孔洞;淀粉的偏光十字消失。改性后的青稞淀粉表面积平均粒径增大,大颗粒数目增加。物理协同酶法处理增加了青稞淀粉的结晶度,晶型由A型晶体向B型转变。改性处理没有产生新的化学基团和化学键,只是改变了青稞淀粉内部结构的重新排列。此外与青稞原淀粉相比,改性青稞淀粉的有序度(DO)值增大,其中普鲁兰酶处理后的青稞淀粉的DO比值最大。改性处理使青稞原淀粉颗粒中的淀粉分子分解成小分子又重新结晶,形成的改性青稞淀粉含有更加致密的大淀粉晶体。
    Abstract: In order to study the effect of physical synergistic enzymatic treatment on the structural characteristics of highland barley starch, ultrasonic and pressure heat were combined with pullulanase to treat highland barley starch. The particle morphology, crystal structure, functional group structure and particle size of treated samples were determined. The results showed that the contents of resistant starch and amylose were increased while amylopectin was decreased. The original structure of starch granules of highland barley was seriously damaged by the modification, showing a clumped structure, rough surface, full of wrinkles, cracks and holes, and the polarized cross disappeared. It was also found that the average particles size of highland barley starch and the number of large particles increased. Meanwhile, the crystallinity of highland barley starch changed from A-type crystal to B-, C- and V-type which lead to the crystallinity increased. The modified treatment did not produce new chemical groups and chemical bonds, but changed the internal structure of barley starch rearrangement. In addition, compared to untreated, the order degree (DO) of the modified barley starch increased, and the value of DO treated with pullulanase was the largest. The modification treatment made the starch molecules into smaller particles then formed more denser and larger starch crystals.
  • 食用淀粉可分为快速消化淀粉(Rapidly Digestible Starch,RSD,20 min内消化)、慢消化淀粉(Slowly Digestible Starch,SDS,20~120min内消化)和抗性淀粉(Resistant Starch,RS,≥120 min仍未被消化)[1]。SDS可缓释葡萄糖从而体内产生平缓的血糖应答[2];RS和SDS具有良好的抗消化特性和功能特性,RS在人体内无法被消化,但在结肠中可以被微生物菌群发酵利用[3],在增加饱腹感的同时血糖应答水平较低,其相关制品具有较低的血糖生成指数,对糖尿病有一定的预防作用。

    影响淀粉消化速率的因素很多,例如淀粉来源、直/支链淀粉含量比、淀粉颗粒形态、淀粉结构等[4]。多数淀粉中主要含RSD,能快速提高人体血糖水平,为改善这一缺陷并扩大淀粉的应用范围,可通过高压湿热、热挤压、超声、酶解、酸解等方法[5]对其进行改性从而获得较高含量的SDS与RS。不同改性方法都有缺陷,传统高压湿热处理操作简单但制取率低、酶解法制取率高但制作成本高,所以考虑成本和制取率,联合多种处理方法是抗性淀粉制作的主要方向[6]

    青稞(Hordeum vulgare L. var. nudum Hook. f.)作为我国青藏高原地区最主要的作物[7]。青稞中主要成分是淀粉,含量一般在45%~75%之间[810],青稞中直链淀粉和支链淀粉的比例在20:80~34:66之间[11],因此研究和开展青稞淀粉深加工,有利于提升青稞附加值,利于青稞产业发展。青稞淀粉的研究集中在加工方式对青稞淀粉消化率的影响[1214],对影响淀粉结构因素的研究多限于不同物理联合或酶联合多级物理法等处理方式对青稞淀粉分子结构和物理特性的影响[1516]。本研究主要以青稞淀粉为原料,通过酶法联合物理处理对青稞淀粉进行处理,研究不同处理对青稞淀粉结构特性的影响,通过分析淀粉结构性质,明确不同改性处理方式对青稞淀粉结构的影响,从而为改性青稞淀粉制备及加工提供理论基础。

    青稞藏青2000 西藏圣科种业提供;普鲁兰酶(食品级1000 U/mL) 北京索莱宝科技有限公司;总淀粉检测试剂盒、直/支链淀粉检测试剂盒、抗性淀粉检测试剂盒 爱尔兰Megazyme公司;MOPS(钠盐) SigMa;所有试剂均为分析纯。

    XZ-10DTD超声波清洗机 宁波新芝生物科技股份有限公司;立式高压蒸汽灭菌锅 上海博迅医疗生物仪器股份有限公司;Nicolet 6700傅立叶红外光谱仪 美国尼高力仪器公司;SU 8010电子显微镜 日立公司;Axio Scope A1偏光显微镜 德国蔡司公司;Mastersizer 3000激光粒度仪 英国马尔文公司;D8 ADVANCE X-射线衍射仪 布鲁克公司;SAXSpoint 2.0小角X射线散射仪 Anton Paar。

    水提法制备青稞淀粉。将青稞籽粒清洗干净,去除石子、燕麦等杂质,晒干备用。用去皮机粉碎去皮后加水浸泡1~2 h,磨浆机制浆过100目筛,浆液4000 r/min离心5 min,去除上清液,刮去沉淀上层灰黑色物质,进行3次水洗,加水搅拌均匀,过筛、离心、去液、刮层,再用无水乙醇进行一次醇洗后40 ℃烘干,粉碎过筛备用,得青稞淀粉(Highland Barley Starch,HS)。

    采用本实验室优化后的方法,即称取10.00 g青稞淀粉,按料/水比为1:14的量加入蒸馏水,制备成青稞淀粉悬浊液,混匀后调pH5.5,于100 ℃水浴中预糊化45 min,取出冷却至室温,加入22 U/mL普鲁兰酶,在60 ℃温度条件下酶解16 h;100 ℃灭酶10 min,冷却至室温,4000 r/min离心10 min,将沉淀在4 ℃条件下老化24 h,后40 ℃烘箱中烘干,粉碎并过100目筛备用,即得P-HRS(Pullulanase-highland barley resistant starch)。

    称取10.00 g按照1.2.2.1方法制备的样品,按料/水比为1:11的量加入蒸馏水,制备成悬浊液,充分混匀后置于100 ℃水浴中预糊化45 min,取出冷却至室温;设置超声功率为300 W,超声温度为70 ℃,超声时间为55 min,进行超声处理,超声结束后冷却,4000 r/min离心10 min,将沉淀在4 ℃条件下老化24 h,最后40 ℃烘箱中烘干,粉碎并过100目筛,即得PU-HRS(Pullulanase+Ultrasonic-highland barley resistant starch)。

    称取10.00 g按照1.2.2.1方法制的的样品,按料/水比为1:17的量加入蒸馏水,制备成悬浊液,充分混匀后,调节pH为6,置于高压蒸汽灭菌锅中,设置压热温度为110 ℃,时间为90 min,进行压热处理,压热结束后,取出冷却,4000 r/min离心10 min,将沉淀在4 ℃条件下老化24 h,最后40 ℃烘箱中烘干,粉碎并过100目筛备用,即得PP-HRS(Pullulanase+Autoclave-highland barley resistant starch)。

    按上述方法依次对青稞淀粉进行普鲁兰酶酶解、超声、压热处理,得到的样品40 ℃烘箱中烘干,粉碎并过100目筛备用,即得PUP-HRS(Pullulanase+Ultrasonic+Autoclave-highland barley resistant starch)。

    总淀粉含量:采用Megazyme 总淀粉试剂盒法测定;直/支链淀粉含量:采用Megazyme直/支链淀粉试剂盒法测定;RS含量采用Megazyme 抗性淀粉试剂盒法测定。

    使用扫描电镜分析样品的颗粒形貌。将样品用导电双面胶固定在金属样品台上,喷金镀膜,然后用扫描电镜在1000×和2000×下进行扫描观察。

    用甘油和水按1:1混合后加入样品配成5%的淀粉乳,吸取一滴于载玻片上,盖上盖玻片,置于载物台上,用偏光显微镜进行观察和拍摄样品的偏光十字。

    使用马尔文激光粒度分析仪测定淀粉的粒径(μm)分布。准确称取0.30 g样品,加入50 mL蒸馏水摇匀,超声3 min,使颗粒充分分散。设定仪器参数为:蒸馏水的折射率为1.33,样品的折射率为1.52,散射模型为Mie,颗粒吸收率为0.100,分析模型为通用模式(模拟MS2000/MS2000E)。

    采用粉末衍射法对青稞淀粉及抗性淀粉进行X-射线衍射扫描分析。测试条件:Cu-ka靶,测量角度2θ=5°~60°,步宽0.02°,扫描速度2°/min。利用JADE 9.0对数据进行分析,计算样品相对结晶度,判读晶型。

    采用溴化钾压片法对淀粉进行傅里叶红外扫描分析。称取一定量的样品和干燥的溴化钾粉末放入玛瑙研钵中进行研磨,充分混合均匀后压片,置于傅里叶红外光谱仪中选用溴化钾片作空白参比,进行全波段扫描(400~4000 cm−1)得到样品的红外光谱图。利用OMNIC 8.2对数据进行去卷积处理,计算有序度(DO)值和双螺旋度(DD)值。

    本文中所有数据统计均采用SPSS 26.0、OMNIC 8.2和JADE 9.0 软件分析,曲线图采用Origin 2021和OMNIC 8.2软件绘制。

    表1可知,水提法制备的青稞淀粉中总淀粉含量为94.48%,其中抗性淀粉含量为3.19%,经过四种改性处理能够显著(P<0.05)提高青稞抗性淀粉的含量,改性处理后青稞抗性淀粉含量达14.38%~15.53%,其中PUP改性处理抗性淀粉含量最高。与普鲁兰酶改性处理相比,PU、PP处理后青稞抗性淀粉含量与酶处理后差异不显著(P>0.05),而直/支链淀粉差异明显。青稞淀粉经过物理协同酶处理后,与原淀粉相比,四种种改性处理能显著降低支链淀粉的含量(P<0.05);直链淀粉比例升高,其中直链淀粉含量P-HRS>PUP-HRS>PP-HRS>PU-HRS>HS,P-HRS的直链淀粉含量最高为86.81%。高含量直链淀粉有助于降低淀粉消化速率,直链淀粉的中、短链相互作用有助于在回生淀粉中形成较小的凝胶网络晶胞,从而减缓淀粉的消化[4]

    表  1  青稞淀粉与改性青稞淀粉的组分含量
    Table  1.  Composition content of highland barley starch and modified highland barley starch
    样品直链淀粉含量(%)支链淀粉含量(%)抗性淀粉含量(%)总淀粉含量(%)
    HS29.94±1.01d64.54±0.87a3.19±0.23c94.48±1.20a
    P-HRS86.81±1.83a2.32±0.81e14.61±0.12b89.13±1.14b
    PU-HRS74.53±1.81c10.71±0.72c14.38±0.05b85.24±1.23c
    PP-HRS76.28±1.82c12.25±0.98b14.41±0.11b88.53±1.97b
    PUP-HRS79.53±0.63b7.74±0.06d15.53±0.19a87.28±0.66bc
    注:同列肩标小写字母不同表示差异显著(P<0.05);表2同。
    下载: 导出CSV 
    | 显示表格

    图1可知,青稞原淀粉颗粒饱满完整,呈圆饼形、扁球状[1720],分为大小两种,整体均匀、规则,表面光滑、有轻微凹陷,边缘整齐圆润,无褶皱、裂纹和孔洞。经改性处理后的青稞淀粉颗粒都遭到了严重破坏,原始形状消失,粘连成团,呈现出团状结构,表面粗糙、凹凸不平,布满褶皱、裂纹和孔洞。四种青稞抗性淀粉(HRS)都经过了普鲁兰酶酶解处理,淀粉脱支,部分短链小分子溶出,所以表面都有微孔结构[21]

    图  1  青稞淀粉与改性青稞抗性淀粉的扫描电镜图及偏光显微镜图
    注:1000、2000为扫描电镜的倍数,100、20 μm为偏光显微镜镜倍数。
    Figure  1.  SEM images and polarizing microscope images of highland barley starch and modified highland barley starch

    青稞原淀粉有清晰的偏光十字,主要呈“正十字”形态,也有“斜十字”和“X”型,偏光十字的交叉点位于淀粉颗粒脐点位置,具有典型的双折射现象,说明青稞原淀粉具有高度有序的晶体结构。经过不同的改性处理后的样品,偏光十字和双折射现象都明显消失。青稞原淀粉是从脐点开始生长,普鲁兰酶或者超声、压热会破坏淀粉颗粒的脐点,淀粉分子会降解成短链小分子,双螺旋结构和结晶层受到破坏,回生又使小分子重新组合排列形成新的结晶,使处理后的青稞淀粉颗粒的聚集程度提高。

    淀粉颗粒直径范围为10~30 μm的为A大淀粉颗粒(透镜型),直径范围<10 μm的为B小淀粉颗粒(球型),相同处理条件下,可以观察到青稞原淀粉呈现双峰的粒度分布(图2),说明青稞淀粉存在大小两种颗粒分布,以A大淀粉颗粒为主,B小淀粉颗粒较少,这和张玉玉[22]的研究结果相一致。

    图  2  青稞淀粉与改性青稞淀粉的分布曲线
    Figure  2.  Grain size distribution curves of highland barley starch and modified highland barley starch

    青稞原淀粉和4种青稞改性淀粉的粒径分布差异较大(见图2表2),经过改性处理使得4种青稞抗性淀粉的比表面积平均粒径(D[3,2])显著提高(P<0.05),最大的是PU-HRS,为39.70%,最小的是PUP-HRS(31.83%),可能是因为经过超声处理使淀粉颗粒内部发生空洞化,体积变大。与青稞原淀粉相比,只经过普鲁兰酶处理的形成的青稞抗性淀粉(P-HRS)的体积平均粒径(D[4,3])差异不显著(P>0.05),而PU-HRS、PP-HRS、PUP-HRS的体积平均粒径(D[4,3])显著变小(P<0.05)。Dv(10)、Dv(50)、Dv(90)值的不断增大,代表样品中大颗粒数目增加,这可能是因为改性处理使青稞淀粉颗粒中的淀粉分子分解成更小的链条,经过老化处理,小分子又重新结晶,形成的青稞抗性淀粉具有更加致密的大淀粉晶体[2324];其次,淀粉颗粒表面被破坏,表明活性增加,发生团聚行为,从而导致粒径尺寸增大[25]

    表  2  青稞淀粉与改性青稞淀粉的粒度分布关键参数
    Table  2.  Key parameters of grain size distribution of highland barley starch and modified highland barley starch
    样品D[3,2](μm)D[4,3](μm)Dv(10)(μm)Dv(50)(μm)Dv(90)(μm)
    HS8.78±0.01d17.60±0.10a8.85±0.02d17.60±0.00d26.70±0.00d
    P-HRS37.90±1.35b17.60±0.44a21.80±0.82b119.00±3.61ab259.33±9.45b
    PU-HRS39.70±0.82a17.12±0.01b23.57±0.67a123.33±3.21a273.67±6.66a
    PP-HRS37.87±1.21b17.15±0.01b22.40±0.70b115.00±3.00b248.67±8.02b
    PUP-HRS31.83±0.60c17.18±0.01b17.57±0.45c100.70±2.46c228.00±3.61c
    下载: 导出CSV 
    | 显示表格

    青稞淀粉颗粒是由微晶、亚微晶和非晶三种不同结构经过无规律耦合从而形成多晶体系,可分为结晶区和非晶区(即无定形区)。在结晶区中,多晶体系具有晶形完整、晶粒线度大、长程有序以及在衍射曲线上尖峰衍射特征明显的特点;在非晶区,多晶体系具有短程有序、长程无序以及在衍射曲线上弥散衍射特征明显的特征[26]

    图3可知,青稞淀粉的X-射线衍射谱图的衍射峰主要分布在为15.15°、16.95°、18.04°、23.05°,为典型的A型晶体结构,这和曹承嘉等[24]对青稞淀粉的晶型结构判断相同。与青稞原淀粉相比,不同改性处理使青稞淀粉晶体峰的峰型和位置发生了明显的改变。P-HRS在17.02°、22.11°、23.82°处有强衍射峰,为典型的B型晶体类型[27],这可能是因为普鲁兰酶作用使青稞支链淀粉被酶解成更短的小分子,这些分支在4 ℃老化回生过程中重新结晶,增加了青稞原淀粉多晶体系中的直链淀粉分子含量,使不稳定的A型晶体结构逐渐向结构更为稳定的B型转变,相对结晶度增加。经过超声波处理的PU-HRS的衍射角2θ为15.37°、17.09°、19.68°、22.25°、23.99°,相对结晶度为35.68%,表明在普鲁兰酶-超声波的作用下A型晶体开始向B型晶体转变。PP-HRS在经过普鲁兰酶酶解及压热处理后,普鲁兰酶专一性地切断α-1,6糖苷键,打破原有的晶体结构,提高了支、直链淀粉分子的比例,促进淀粉小分子重新结晶形成双螺旋结构,其衍射角2θ为15.30°、17.00°、19.61°、22.22°、23.85°相对结晶度为38.56%。普鲁兰酶+超声+压热处理的PUP-HRS的衍射峰角2θ为5.73°、12.87°、15.18°、17.02°、19.47°、22.11°、23.88°,相对结晶度为38.87%,主要是转变为B型晶体。

    图  3  青稞淀粉与改性青稞淀粉的XRD曲线
    Figure  3.  XRD patterns of highland barley starch and modified highland barley starch

    通过傅里叶红外光谱仪可对淀粉颗粒的短程有序结构进行相关分析研究,特别是链构象和双螺旋结构之间的差异化问题[28]。从图4图5表3可以看出不同处理青稞淀粉的红外分子结构情况,明确不同改性处理方式对青稞淀粉分子结构的影响。从图4中可以看出,5种青稞淀粉样品的红外光谱图走势大致相同,表明其链构象和双螺旋结构的差异不大。

    图  4  青稞淀粉与改性青稞淀粉的红外光谱图
    Figure  4.  Infrared spectra of highland barley starch and modified highland barley starch
    图  5  青稞淀粉与改性青稞淀粉的DO与DD值
    注:小写字母不同表示差异显著(P<0.05)。
    Figure  5.  DO and DD values of highland barley starch and modified highland barley starch
    表  3  青稞淀粉与改性青稞淀粉官能团的特征吸收峰
    Table  3.  Characteristic absorption peaks of functional groups of highland barley starch and modified highland barley starch
    特征吸收峰(cm−1 官能团结构[25,2932]
    官能团
    特征区
    3370 葡萄糖单元中O-H伸缩振动峰
    2930 亚甲基-CH2的伸缩振动峰
    1652 淀粉中吸附水中无定型区域的吸收峰
    指纹区 930 吡喃糖分子C=O振动峰
    765 葡萄糖吡喃糖环骨架模式振动区域
    下载: 导出CSV 
    | 显示表格

    表3分析可知,HS、P-HRS、PU-HRS、PP-HRS、PUP-HRS均在3370、2930、1652、930、765 cm−1附近出现特征吸收峰,分别对应O-H伸缩振动峰、亚甲基-CH2的伸缩振动峰、淀粉中吸附水中无定型区域的吸收峰,以及指纹区的C吡喃糖分子C=O振动峰、葡萄糖吡喃糖环骨架模式振动区域。说明改性没有使青稞原淀粉的化学结构发生变化,没有产生新的化学基团和化学键,只是改变了青稞淀粉内部结构的重新排列。

    995、1022、1047 cm−1是表征淀粉构象的特性谱带,1022 cm−1是无定型区的特征谱带,995和1047 cm−1则分别表示双螺旋和有序结构的振动吸收,可用DO(A1047/A1022)和DD(A995/A1022)表示有序结构和双螺旋结构程度,DO值增大,表明分子有序性增高[33]。由图5可知,与原淀粉相比,处理后的青稞淀粉DO值增大,表明改性处理使青稞淀粉的分子有序性提高;青稞淀粉样品的DD值均大于DO值,双螺旋度高于双螺旋有序度,说明并非所有的双螺旋必然是晶体的一部分,这和殷秀秀[34]以及Zhang等[35]的结论相一致。

    通过对青稞淀粉及改性青稞淀粉的淀粉组分研究表明,物理协同酶改性处理能够显著提高青稞直链淀粉的含量,降低支链淀粉含量。青稞淀粉中抗性淀粉含量为3.19%,改性青稞淀粉中抗性淀粉含量达14.38%~15.53%。通过对青稞淀粉与改性青稞淀粉结构研究发现,物理协同酶改性能够破坏青稞淀粉原有淀粉结构,使原始形态消失,粘连成团,呈现类似土块、碎石形状;改性青稞淀粉偏光十字消失,物理协同酶改性处理使淀粉双螺旋结构和结晶结构受到破坏,从而导致偏光消失。改性处理增加了青稞抗性淀粉(HRS)的结晶度,A型晶体向B型转变。物理协同酶改性处理只是促使青稞淀粉的分子有序性提高,没有使青稞原淀粉的化学结构发生变化。

    物理协同酶改性处理能够使青稞淀粉组分及分子结晶特性发生明显变化,这能显著改变青稞淀粉的加工特性;而本研究只进行了物理协同酶改性对青稞淀粉结构的影响,今后将对改性青稞淀粉加工特性进行研究,为青稞淀粉的类产品加工性质提供数据支撑。此外发现,青稞中抗性淀粉含量的提高可能是由普鲁兰酶酶解起主要作用,物理处理的贡献比较小,这为青稞抗性淀粉的制备提供一定的参考依据。

  • 图  1   青稞淀粉与改性青稞抗性淀粉的扫描电镜图及偏光显微镜图

    注:1000、2000为扫描电镜的倍数,100、20 μm为偏光显微镜镜倍数。

    Figure  1.   SEM images and polarizing microscope images of highland barley starch and modified highland barley starch

    图  2   青稞淀粉与改性青稞淀粉的分布曲线

    Figure  2.   Grain size distribution curves of highland barley starch and modified highland barley starch

    图  3   青稞淀粉与改性青稞淀粉的XRD曲线

    Figure  3.   XRD patterns of highland barley starch and modified highland barley starch

    图  4   青稞淀粉与改性青稞淀粉的红外光谱图

    Figure  4.   Infrared spectra of highland barley starch and modified highland barley starch

    图  5   青稞淀粉与改性青稞淀粉的DO与DD值

    注:小写字母不同表示差异显著(P<0.05)。

    Figure  5.   DO and DD values of highland barley starch and modified highland barley starch

    表  1   青稞淀粉与改性青稞淀粉的组分含量

    Table  1   Composition content of highland barley starch and modified highland barley starch

    样品直链淀粉含量(%)支链淀粉含量(%)抗性淀粉含量(%)总淀粉含量(%)
    HS29.94±1.01d64.54±0.87a3.19±0.23c94.48±1.20a
    P-HRS86.81±1.83a2.32±0.81e14.61±0.12b89.13±1.14b
    PU-HRS74.53±1.81c10.71±0.72c14.38±0.05b85.24±1.23c
    PP-HRS76.28±1.82c12.25±0.98b14.41±0.11b88.53±1.97b
    PUP-HRS79.53±0.63b7.74±0.06d15.53±0.19a87.28±0.66bc
    注:同列肩标小写字母不同表示差异显著(P<0.05);表2同。
    下载: 导出CSV

    表  2   青稞淀粉与改性青稞淀粉的粒度分布关键参数

    Table  2   Key parameters of grain size distribution of highland barley starch and modified highland barley starch

    样品D[3,2](μm)D[4,3](μm)Dv(10)(μm)Dv(50)(μm)Dv(90)(μm)
    HS8.78±0.01d17.60±0.10a8.85±0.02d17.60±0.00d26.70±0.00d
    P-HRS37.90±1.35b17.60±0.44a21.80±0.82b119.00±3.61ab259.33±9.45b
    PU-HRS39.70±0.82a17.12±0.01b23.57±0.67a123.33±3.21a273.67±6.66a
    PP-HRS37.87±1.21b17.15±0.01b22.40±0.70b115.00±3.00b248.67±8.02b
    PUP-HRS31.83±0.60c17.18±0.01b17.57±0.45c100.70±2.46c228.00±3.61c
    下载: 导出CSV

    表  3   青稞淀粉与改性青稞淀粉官能团的特征吸收峰

    Table  3   Characteristic absorption peaks of functional groups of highland barley starch and modified highland barley starch

    特征吸收峰(cm−1 官能团结构[25,2932]
    官能团
    特征区
    3370 葡萄糖单元中O-H伸缩振动峰
    2930 亚甲基-CH2的伸缩振动峰
    1652 淀粉中吸附水中无定型区域的吸收峰
    指纹区 930 吡喃糖分子C=O振动峰
    765 葡萄糖吡喃糖环骨架模式振动区域
    下载: 导出CSV
  • [1]

    ENGLYST H N, HUDSON G J. The classification and measurement of dietary carbohydrates[J]. Food Chemistry,1996,57(1):15−21. doi: 10.1016/0308-8146(96)00056-8

    [2] 李若敏, 张焕新, 郑义, 等. 酶法制备玉米慢消化淀粉的研究[J]. 中国粮油学报,2022,37(6):67−74. [LI R M, ZHANG H X, ZHENG Y, et al. Enzymatic preparation of slowly digested corn starch[J]. Journal of the Chinese Cereals and Oils Association,2022,37(6):67−74. doi: 10.3969/j.issn.1003-0174.2022.06.011

    LI R M, ZHANG H X, ZHENG Y, et al. Enzymatic preparation of slowly digested corn starch[J]. Journal of the Chinese Cereals and Oils Association, 2022, 376): 6774. doi: 10.3969/j.issn.1003-0174.2022.06.011

    [3] 龚永强, 刘静, 余振宇, 等. 抗性、慢消化淀粉的制备及其控血糖机理的研究进展[J]. 中国粮油学报,2022,37(1):187−195. [GONG Y Q, LIU J, YU Z Y, et al. Research progress in preparation and glycemic regulation mechanism of resistant and slowly digestible starch[J]. Journal of the Chinese Cereals and Oils Association,2022,37(1):187−195. doi: 10.3969/j.issn.1003-0174.2022.01.029

    GONG Y Q, LIU J, YU Z Y, et al. Research progress in preparation and glycemic regulation mechanism of resistant and slowly digestible starch[J]. Journal of the Chinese Cereals and Oils Association, 2022, 371): 187195. doi: 10.3969/j.issn.1003-0174.2022.01.029

    [4] 魏芷茜, 欧雨嘉, 汤俊杰, 等. 淀粉消化的影响因素及其速率调控的研究进展[J]. 福建农林大学学报(自然科学版),2022,51(3):289−297. [WEI Z X, OU Y J, TANG J J, et al. Research progress on the influencing factors of starch digestion and regulation of digestion rate[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2022,51(3):289−297.

    WEI Z X, OU Y J, TANG J J, et al. Research progress on the influencing factors of starch digestion and regulation of digestion rate[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2022, 513): 289297.

    [5] 刘霞, 黄雅萍, 卢旭, 等. 抗性淀粉的结构性质与功能关系研究进展[J]. 食品与发酵工业,2020,46(18):279−286. [LIU X, HANG Y P, LU X, et al. Advances in structural properties and its correlation with physiological functions of resistant starch[J]. Food and Fermentation Industries,2020,46(18):279−286. doi: 10.13995/j.cnki.11-1802/ts.023309

    LIU X, HANG Y P, LU X, et al. Advances in structural properties and its correlation with physiological functions of resistant starch[J]. Food and Fermentation Industries, 2020, 4618): 279286. doi: 10.13995/j.cnki.11-1802/ts.023309

    [6] 谢承孟, 陈军, 何丽君. 抗性淀粉制备工艺的研究进展[J]. 轻工科技,2022,38(4):13−14,24. [XIE C M, CHEN J, HE L J. Research progress in resistant starch producing technology[J]. Light Industry Science and Technology,2022,38(4):13−14,24.

    XIE C M, CHEN J, HE L J. Research progress in resistant starch producing technology[J]. Light Industry Science and Technology, 2022, 384): 1314,24.

    [7] 翟会生, 李俏, 张玉红, 等. 72份青稞氨基酸组成与营养价值评价[J]. 植物遗传资源学报,2021,22(1):121−129. [ZHAI H S, LI Q, ZHANG Y H, et al. Evaluation of the amino acids composition and nutrition value of 72 hulless barley[J]. Journal of Plant Genetic Resources,2021,22(1):121−129. doi: 10.13430/j.cnki.jpgr.20190102002

    ZHAI H S, LI Q, ZHANG Y H, et al. Evaluation of the amino acids composition and nutrition value of 72 hulless barley[J]. Journal of Plant Genetic Resources, 2021, 221): 121129. doi: 10.13430/j.cnki.jpgr.20190102002

    [8] 靳玉龙, 白婷, 朱明霞, 等. 西藏二棱青稞与六棱青稞品质差异分析[J]. 西藏农业科技,2019,41(S1):84−87. [JIN Y L, BAI T, ZHU M X, et al. Analysis of quality difference between two and six-rowed highland barley in Tibet[J]. Tibet Journal of Agricultural Sciences,2019,41(S1):84−87. doi: 10.3969/j.issn.1005-2925.2019.z1.019

    JIN Y L, BAI T, ZHU M X, et al. Analysis of quality difference between two and six-rowed highland barley in Tibet[J]. Tibet Journal of Agricultural Sciences, 2019, 41S1): 8487. doi: 10.3969/j.issn.1005-2925.2019.z1.019

    [9] 周红, 杨希娟, 张文刚, 等. 不同品种黑青稞籽粒营养品质的比较分析[C]//中国食品科学技术学会第十七届年会摘要集. 西安:中国食品科学技术学会, 2020:334−335. [ZHOU H, YANG X J, ZHANG W G, et al. Comparison and analysis of the nutritional quality of different varieties of black highland barley[C]//Chinese Institute of Food Science and Technology Abstracts of the seventeenth Annual Meeting. Xi’an:Chinese Institute of Food Science and Technology, 2020:334−335.

    ZHOU H, YANG X J, ZHANG W G, et al. Comparison and analysis of the nutritional quality of different varieties of black highland barley[C]//Chinese Institute of Food Science and Technology Abstracts of the seventeenth Annual Meeting. Xi’an: Chinese Institute of Food Science and Technology, 2020: 334−335.

    [10] 白婷, 靳玉龙, 朱明霞, 等. 56份青藏高原不同区域青稞籽粒营养品质综合评价[J]. 食品工业科技,2018,39(23):318−322,328. [BAI T, JIN Y L, ZHU M X, et al. Comprehensive evaluation of quality of 56 highland barleys ( Hordeum vulgare Linn.) in different regions of Tibet Plateau[J]. Science and Technology of Food Industry,2018,39(23):318−322,328. doi: 10.13386/j.issn1002-0306.2018.23.055

    BAI T, JIN Y L, ZHU M X, et al. Comprehensive evaluation of quality of 56 highland barleys (Hordeum vulgare Linn.) in different regions of Tibet Plateau[J]. Science and Technology of Food Industry, 2018, 3923): 318322,328. doi: 10.13386/j.issn1002-0306.2018.23.055

    [11] 赵波. 青稞适度加工稳定化关键技术及制品品质改良机制研究[D]. 北京:中国农业科学院, 2020. [ZHAO B. Research on the key technology of hull-less barley moderate process and stabilization and mechanism for improvement of product quality[D]. Beijing:Chinese Academy of Agricultural, 2020.

    ZHAO B. Research on the key technology of hull-less barley moderate process and stabilization and mechanism for improvement of product quality[D]. Beijing: Chinese Academy of Agricultural, 2020.

    [12] 李岩, 孙康娜, 宋晓凡, 等. 普鲁兰酶协同 α-葡萄糖苷酶降低青稞快消化淀粉含量酶解工艺优化[J]. 中国酿造,2023,42(1):115−120. [LI Y, SUN K N, SONG X F, et al. Optimization of enzymolysis technology for reducing rapid digestible starch contents in highland barley by pullulanase and α-glucosidase[J]. China Brewing,2023,42(1):115−120.

    LI Y, SUN K N, SONG X F, et al. Optimization of enzymolysis technology for reducing rapid digestible starch contents in highland barley by pullulanase and α-glucosidase[J]. China Brewing, 2023, 421): 115120.

    [13] 张花, 宋晓凡, 李岩, 等. α-淀粉酶降低青稞快消化淀粉含量工艺优化[J]. 食品与机械,2022,38(12):199−204. [ZHANG H, SONG X F, LI Y, et al. Study on the process of α-amylase reduces the content of rapidly digestion starch in highland barley[J]. Food & Machinery,2022,38(12):199−204. doi: 10.13652/j.spjx.1003.5788.2022.90235

    ZHANG H, SONG X F, LI Y, et al. Study on the process of α-amylase reduces the content of rapidly digestion starch in highland barley[J]. Food & Machinery, 2022, 3812): 199204. doi: 10.13652/j.spjx.1003.5788.2022.90235

    [14] 任欣, 秦梦园, 张敏, 等. 不同熟化方式对青稞淀粉体外消化及多酚利用特性的影响[J/OL]. 中国粮油学报:1−11. [2023-03-27]. https://doi.org/10.20048/j.cnki.issn.1003-0174.000038. [REN X, QIN M Y, ZHANG M, et al. Effects of different cooking methods on in vitro starch digestion and polyphenols utilization characteristics of highland barley[J/OL]. Journal of the Chinese Cereals and Oils Association:1−11. [2023-03-27]. https://doi.org/10.20048/j.cnki.issn.1003-0174.000038.

    REN X, QIN M Y, ZHANG M, et al. Effects of different cooking methods on in vitro starch digestion and polyphenols utilization characteristics of highland barley[J/OL]. Journal of the Chinese Cereals and Oils Association: 1−11. [2023-03-27]. https://doi.org/10.20048/j.cnki.issn.1003-0174.000038.

    [15] 卞华伟, 郑波, 陈玲, 等. 干热处理对青稞淀粉多尺度结构和理化性质的影响[J]. 食品科学,2020,41(7):93−101. [BIAN H W, ZHENG B, CHEN L, et al. Multi-scale structure and physicochemical properties of highland barley starch following dry heat treatment[J]. Food Science,2020,41(7):93−101. doi: 10.7506/spkx1002-6630-20181107-085

    BIAN H W, ZHENG B, CHEN L, et al. Multi-scale structure and physicochemical properties of highland barley starch following dry heat treatment[J]. Food Science, 2020, 417): 93101. doi: 10.7506/spkx1002-6630-20181107-085

    [16] 王则徐, 周文菊, 陈正行, 等. 不同制备方法对青稞抗性淀粉消化性的影响[J/OL]. 食品与发酵工业:1−9. [2023-03-27]. https://doi.org/10.13995/j.cnki.11-1802/ts.033750. [WANG Z X, ZHOU W J, CHEN Z X, et al. Effect of different preparation methods on digestibility of highland barley resistant starch[J/OL]. Food and Fermentation Industries:1−9. [2023-03-27]. https://doi.org/10.13995/j.cnki.11-1802/ts.033750.

    WANG Z X, ZHOU W J, CHEN Z X, et al. Effect of different preparation methods on digestibility of highland barley resistant starch[J/OL]. Food and Fermentation Industries: 1−9. [2023-03-27]. https://doi.org/10.13995/j.cnki.11-1802/ts.033750.

    [17] 闵晶晶, 陈昕钰, 王磊磊, 等. 四种元麦淀粉粒形态结构与理化性质的比较[J]. 中国粮油学报,2020,35(2):42−49. [MIN J J, CHEN X Y, WANG L L, et al. Morphological structures and physicochemical properties of starch grain in four varieties of naked barleys[J]. Journal of the Chinese Cereals and Oils Association,2020,35(2):42−49. doi: 10.3969/j.issn.1003-0174.2020.02.009

    MIN J J, CHEN X Y, WANG L L, et al. Morphological structures and physicochemical properties of starch grain in four varieties of naked barleys[J]. Journal of the Chinese Cereals and Oils Association, 2020, 352): 4249. doi: 10.3969/j.issn.1003-0174.2020.02.009

    [18] 任欣, 孙沛然, 闫淑琴, 等. 5种青稞淀粉的理化性质比较[J]. 中国食品学报,2016,16(7):268−275. [REN X, SHUN P R, YAN S Q, et al. Comparison of physical and chemical properties of five highland barley starches[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(7):268−275. doi: 10.16429/j.1009-7848.2016.07.036

    REN X, SHUN P R, YAN S Q, et al. Comparison of physical and chemical properties of five highland barley starches[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 167): 268275. doi: 10.16429/j.1009-7848.2016.07.036

    [19]

    NAGULESWARAN S, VASANTHAN T, HOOVER R, et al. Amylolysis of amylopectin and amylose isolated from wheat, triticale, corn and barley starches[J]. Food Hydrocolloids,2014,35(1):686−693.

    [20]

    LEITE T S, DE JESUS A L T, SCHMIELE M, et al. High pressure processing (HPP) of pea starch:Effect on the gelatinization properties[J]. LWT-Food Science and Technology,2017,76:361−369. doi: 10.1016/j.lwt.2016.07.036

    [21]

    GUO Z, ZENG S, LU X, et al. Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure[J]. Food Chemistry,2015,186(1):223−230.

    [22] 张玉玉. 青稞淀粉的提取及特性研究[D]. 郑州:河南工业大学, 2010. [ZHANG Y Y. Isolation and charaterization of hull-less barley starches[D]. Zhengzhou:Henan University of Technology, 2010.

    ZHANG Y Y. Isolation and charaterization of hull-less barley starches[D]. Zhengzhou: Henan University of Technology, 2010.

    [23]

    CHEN C, FU W, CHANG Q, et al. Moisture distribution model describes the effect of water content on the structural properties of lotus seed resistant starch[J]. Food Chemistry,2019,286:449−458. doi: 10.1016/j.foodchem.2019.01.214

    [24] 曹承嘉, 缪书婷, 张晓晨, 等. 压热冷却循环处理制备青稞抗性淀粉的工艺优化及其特性研究[J]. 食品科技,2020,45(3):253−258. [CAO C J, MIAO S T, ZHANG X C, et al. Optimization of the preparation and physicochemical properties of hulless barley resistance starch by autoclaving-retrograding cycle method[J]. Food Science and Technology,2020,45(3):253−258. doi: 10.13684/j.cnki.spkj.2020.03.046

    CAO C J, MIAO S T, ZHANG X C, et al. Optimization of the preparation and physicochemical properties of hulless barley resistance starch by autoclaving-retrograding cycle method[J]. Food Science and Technology, 2020, 453): 253258. doi: 10.13684/j.cnki.spkj.2020.03.046

    [25] 陆兰芳, 扎西拉宗, 吴进菊, 等. 超声处理对小米淀粉结构及理化性质的影响[J]. 食品工业科技,2021,42(24):60−67. [LU L F, ZHAXILAZONG, WU J J, et al. Effects of ultrasonic treatment on the structure and physicochemical properties of millet starch[J]. Science and Technology of Food Industry,2021,42(24):60−67. doi: 10.13386/j.issn1002-0306.2021040127

    LU L F, ZHAXILAZONG, WU J J, et al. Effects of ultrasonic treatment on the structure and physicochemical properties of millet starch[J]. Science and Technology of Food Industry, 2021, 4224): 6067. doi: 10.13386/j.issn1002-0306.2021040127

    [26] 赵坤. 普通小麦和糯小麦A, B淀粉的多层次结构研究[D]. 杨凌:西北农林科技大学, 2020. [ZHAO K. The study of multi-layer structures of common wheat A-type and B-type starches and waxy wheat A-type and B-type starches[D]. Yangling:Northwest A&F University, 2020.

    ZHAO K. The study of multi-layer structures of common wheat A-type and B-type starches and waxy wheat A-type and B-type starches[D]. Yangling: Northwest A&F University, 2020.

    [27] 靳凤芳, 牛丽亚, 曾子聪, 等. 不同种类淀粉与黑米粉复配体系的理化性质和分子结构特性研究[J]. 粮油食品科技,2023,31(2):106−115. [JIN F F, NIU L Y, ZENG Z C, et al. Research on physicochemical properties and molecular structure of black rice flour mixed with different starches[J]. Science and Technology of Cereals, Oils and Foods,2023,31(2):106−115. doi: 10.16210/j.cnki.1007-7561.2023.02.0014

    JIN F F, NIU L Y, ZENG Z C, et al. Research on physicochemical properties and molecular structure of black rice flour mixed with different starches[J]. Science and Technology of Cereals, Oils and Foods, 2023, 312): 106115. doi: 10.16210/j.cnki.1007-7561.2023.02.0014

    [28] 高闪闪. 等离子处理对淀粉多尺度结构及苦荞淀粉-槲皮素互作的影响[D]. 杨凌:西北农林科技大学, 2021. [GAO S S. Study on multi-scale structure of cold plasma treated starch and the effect on Tartary buckwheat starch-quercetin interaction [D]. Yangling:Northwest A&F University, 2021.

    GAO S S. Study on multi-scale structure of cold plasma treated starch and the effect on Tartary buckwheat starch-quercetin interaction [D]. Yangling: Northwest A&F University, 2021.

    [29] 张奎亮, 代养勇, 侯汉学, 等. 超声处理对马铃薯淀粉结构特性及理化性质的影响[J]. 食品科学,2018,39(5):128−134. [ZHANG K L, DAI Y Y, HOU H X, et al. Effect of ultrasonic treatment on structure and physicochemical properties of potato starch[J]. Food Science,2018,39(5):128−134. doi: 10.7506/spkx1002-6630-201805020

    ZHANG K L, DAI Y Y, HOU H X, et al. Effect of ultrasonic treatment on structure and physicochemical properties of potato starch[J]. Food Science, 2018, 395): 128134. doi: 10.7506/spkx1002-6630-201805020

    [30] 李光磊, 陈梦雪, 曾洁, 等. 韧化处理对甘薯淀粉分子结构的影响[J]. 食品工业科技,2016,37(17):106−110. [LI G L, CHEN M X, ZENG J, et al. Effect of annealing treatment on molecular structure of sweet potato starch[J]. Science and Technology of Food Industry,2016,37(17):106−110. doi: 10.13386/j.issn1002-0306.2016.17.012

    LI G L, CHEN M X, ZENG J, et al. Effect of annealing treatment on molecular structure of sweet potato starch[J]. Science and Technology of Food Industry, 2016, 3717): 106110. doi: 10.13386/j.issn1002-0306.2016.17.012

    [31]

    LU L F, ZHA X L Z, WU J J, et al. Effects of ultrasonic treatment on the structure and physicochemical properties of millet starch[J]. Science and Technology of Food Industry,2021,42(24):60−67.

    [32] 胡荣, 汪楠, 张甫生, 等. 高压均质处理对豌豆淀粉流变特性及多尺度结构的影响[J]. 食品科学,2023,44(5):53−61. [HU R, WANG N, ZHANG F S, et al. Effect of high-pressure homogenization on rheological properties and multiscale structure of pea starch[J]. Food Science,2023,44(5):53−61. doi: 10.7506/spkx1002-6630-20220513-164

    HU R, WANG N, ZHANG F S, et al. Effect of high-pressure homogenization on rheological properties and multiscale structure of pea starch[J]. Food Science, 2023, 445): 5361. doi: 10.7506/spkx1002-6630-20220513-164

    [33]

    FLORES-SILVA P C, ALVAREZ-RAMIREZ J, BELLO-PEREZ L A. Effect of dual modification order with ultrasound and hydrothermal treatments on starch digestibility[J]. Starch-Stärke,2018,70(5-6):1700284.

    [34] 殷秀秀. 不同加工方式对小扁豆淀粉及抗性淀粉多尺度结构的影响及机理研究[D]. 西安:陕西师范大学, 2019. [YIN X X. Effect of different processing methods on multi-scale structure and mechanism of lentil starch and resistant starch[D]. Xi'an:Shaanxi Normal University, 2019.

    YIN X X. Effect of different processing methods on multi-scale structure and mechanism of lentil starch and resistant starch[D]. Xi'an: Shaanxi Normal University, 2019.

    [35]

    ZHANG J, CHEN F, LIU F, et al. Study on structural changes of microwave heat-moisture treated resistant Canna edulis Ker starch during digestion in vitro[J]. Food Hydrocolloids,2010,24(1):27−34. doi: 10.1016/j.foodhyd.2009.07.005

  • 其他相关附件

图(5)  /  表(3)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  13
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 网络出版日期:  2023-12-02
  • 刊出日期:  2024-01-23

目录

/

返回文章
返回