Research Progress of Nutritional Ingredients, Functional Properties and Development Utilization of Finger Millet of Finger Millet
-
摘要: 穇子(Eleusine coracana(L.)Gaertn.)是一种拥有丰富营养价值的药食同源谷物。穇子中营养成分主要包括淀粉、矿物质、氨基酸、膳食纤维、多酚类等物质,具有抗氧化、降血糖、改善肠道健康、降血压等功效。目前,穇子主要用于替代少量的面粉或其他杂粮制作成各种传统食品,产品单一,营养价值未能被充分利用。随着人们对食品营养和健康功能的追求,穇子功能特性逐渐被关注和利用,但对穇子功能特性应用研究仅处于试验阶段,尚未开发其功能性食品。本文主要对近年来穇子的营养和功能成分、功能特性以及产品开发研究现状进行综述,以期为穇子的深入研究及开发利用提供理论参考。Abstract: Finger millet (Eleusine coracana (L.) Gaertn.) is a medicinal and food homologous cereal that is rich in nutrients. The nutritional ingredients of finger millet mainly include starch, minerals, amino acids, dietary fiber and polyphenols, which have effects of anti-oxidation, lowering blood sugar, improving intestinal health and lowering blood pressure. At present, finger millet is mainly used to make various traditional foods with replacing a small amount of flour or other grains. The product is single and the nutritional value of finger millet cannot been fully utilized. The functional properties of finger millet are gradually noticed and utilized with the pursuit of food nutrition and health function. However, the research on the functional ingredients contained in finger millet is only at the experimental stage, and few functional products are developed. This review summarizes the nutritional and functional ingredients, functional properties and product development status of finger millet in recent years, and aims to provide a theoretical basis for the in-depth study and applications of finger millet.
-
穇子(Eleusine coracana(L.) Gaertn),又名红稗、碱谷、鹰爪粟、龙爪稷、鸡爪谷、拳头粟、鸡爪稗、云南稗、野粟等,是禾本科穇属草本植物,种子多为红褐色的珠体,直径较小[1]。穇子作为干旱区三大禾谷类作物之一,具有耐旱以及抗碱耐盐的特点,生长在边缘土地、高海拔地区[2],在印度、尼泊尔、乌干达、中国等国家均有种植[3],其中,我国主要在贵州、湖南、广西、陕西、西藏等地种植[4]。
穇子有着悠久的药用及食用历史,据《本草纲目》记载,“穇子,甘涩、无毒,补中益气,厚肠胃”,常用于尿频、脾虚腹泻、消化不良等症[3],也曾被国外科学院视为潜在的“超级谷物”[2]。穇子中含有较高含量的矿物质、维生素、必需氨基酸、多酚类物质、多糖、植酸盐等成分,使其具有抗氧化、降血糖、降血压等作用[5]。随着人们生活水平的提高和对健康的重视,穇子的功能特性逐渐被开发和利用。近年来,关于穇子开发利用的研究虽已取得一定的进展,但仍然停留在用于替代面粉或其他杂粮制作成各种传统食品阶段,产品单一。
本文主要从穇子的营养和功能成分、功能特性以及产品开发研究进展进行了梳理和总结。系统概括了穇子的营养和功能性成分、功能特性以及开发应用的研究进展,并展望了穇子在应用研究方面存在的局限性以及未来研究的方向,以期为我国穇子的深入研究及产品开发提供理论参考。
1. 穇子的营养和功能成分
1.1 淀粉
穇子中的淀粉占其营养物质的50%以上,含量占比略低于其他谷物,且不同地区种植的穇子淀粉含量占比存在差异,如表1所示。穇子淀粉平均粒径在7.7 μm左右,属于C型淀粉晶型,溶解度与膨胀度随温度的升高而增大,属于典型的二度膨胀淀粉,凝沉性及冻融稳定性较玉米淀粉差[6]。穇子中含有30%左右的慢消化淀粉,释放糖分缓慢,适合糖尿病患者食用[7]。开发具有高附加值的功能性淀粉将成为穇子开发利用的一大热点。为了提高穇子中慢消化淀粉的含量和改善穇子淀粉的理化性能,陈家丽等[8]采用超声-压热法对穇子淀粉进行改性,制得穇子回生淀粉(RS3),其溶解度、抗凝沉性、冻融稳定性、热稳定性等理化性质较好,膨胀度较小,可以用来改善冷冻、油炸和烘焙等食品中的质地与脆度,与玉米RS3相比,穇子RS3具有更强的抗消化能力,可用来开发降血糖功能性食品。
表 1 穇子与其他谷物营养成分Table 1. Nutrient contents of finger millet and other grain名称 印度
穇子[9]习水
红稗[15]西藏
龙爪稷[17−18]大米[19] 小麦[19] 小米[19] 淀粉(g/100 g) 72.00 68.20 58.00 77.90 75.20 75.10 蛋白质(g/100 g) 7.30 5.21 7.30 7.40 11.90 9.00 钙(mg/100 g) 344.00 208.50 225.95 13.00 34.00 41.00 钾(mg/100 g) 408.00 516.60 328.18 103.00 289.00 284.00 镁(mg/100 g) 137.00 181.60 140.39 34.00 4.00 107.00 铁(mg/100 g) 3.90 1.87 1.52 2.30 4.10 5.10 锌(mg/100 g) 2.31 − 1.39 1.70 2.33 1.87 注:“−”表示未测量。 1.2 蛋白质及氨基酸
氨基酸的种类、含量和比值愈接近或符合人体组织蛋白质中各种氨基酸的需要量时,其生物学价值就越高,也就是蛋白质的营养价值越高。穇子中蛋白质含量低于其他大宗谷物,且不同品种、环境穇子中蛋白质含量存在差异,平均含量占比约为7.2%,其中醇溶蛋白占总蛋白质的24.6%~36.2%[9],如表1所示。穇子蛋白中具有良好的氨基酸平衡,富含18种氨基酸且比例均衡,其中必需氨基酸占总氨基酸的44.7%[10],符合FAO/WHO提出的蛋白模式必需氨基酸总量达40%左右的标准。与其他谷物相比,穇子中富含色氨酸、缬氨酸、异亮氨酸、蛋氨酸和苏氨酸,其中蛋氨酸含量很高,约占总蛋白质的5%,含硫氨基酸与牛奶中的氨基酸组成相当,因此可作为良好的氨基酸补充剂[11−12]。此外,有研究表明穇子的蛋白质易于消化,因此可作为婴幼儿食品的原料[13]。
1.3 矿物质
穇子富含矿物质,其含量高于大米、小麦、小米等谷物,不同谷物品种的矿物质含量也有差异,生长环境对穇子的营养成分也有一定影响,印度穇子的钙及铁的含量相对于习水红稗、西藏龙爪粟高,具体含量见表1。其中钙含量在谷物中最高,印度穇子钙含量可达344 mg/100 g[14]。徐本刚等[15]对习水红稗中的矿物质的种类及含量进行测定,研究结果表明钙、钾、钠、镁、铁等元素较为丰富,其中钙含量为208.50 mg/100 g,高于榛子,仅次于美国大杏仁。虽然穇子中矿物质含量丰富,但由于其中高含量的植酸盐、蛋白酶抑制剂、单宁等抗营养因子,降低了矿物质的生物可利用率,因此很多研究者通过各种加工方式来提高穇子矿物质的含量及生物利用率。Udeh等[16]经过72~96 h的制麦对谷物中的某些矿物质产生了积极影响,在制麦48 h后,特别是在96 h时,观察到矿物质的增加。主要是由于在制麦过程中,谷物中植酸盐复合物在植酸酶的作用下,解离为无机磷酸盐、肌醇磷酸单体、二价和三价矿物离子、蛋白质和氨基酸等,矿物质增加,植酸盐减少,从而使穇子中矿物质的生物利用率得到提高。
1.4 多酚类物质
多酚类化合物是指芳环上连有多个酚羟基以及相关衍生物的一类化合物,在人类和动物食用的植物性食物中普遍存在,具有抗氧化、清除自由基、抑制癌症、降低血糖和血脂、延缓衰老、增强免疫力等功能[20]。研究发现穇子的多酚类物质含量要高于其他谷物,Kumari等[21]从不同气候带种植的不同种类的谷子中提取可溶性和结合的酚类化合物,结果表明穇子的多酚类物质含量最高,且不同种类的穇子其多酚类物质的含量也有差异,棕色谷粒的穇子比白色谷粒的多酚类物质含量要高,在棕色品种的穇子中含有的大量的单宁以及花青素(红色色素)[22−23]。穇子中的多酚类物质主要是酚酸类化合物和单宁,也有少量的类黄酮类化合物存在,如原花青素、槲皮素等,具体成分及主要酚类化合物结构式见表2和图1。王乐等[24]采用4种不同溶剂提取的穇子多酚,研究结果表明酸化乙醇的提取效率最高,高效液相色谱分析得出原儿茶素以及对羟基苯甲酸的含量明显比其他几种酚酸高。在加工过程中,穇子中多酚类物质活性的保存及稳定性是关键,剥壳、浸泡、发芽、发酵、膨化和蒸煮等不同加工技术会影响多酚类物质的含量[9]。研究表明脱皮使穇子总多酚含量降低了74.7%,且造成显著性差异降低单宁含量[25],因此在穇子多酚应用研究中应选择合适的加工方式。
1.5 膳食纤维
膳食纤维作为穇子的功能成分之一,具有较高的利用价值,而且含量高于其他种类的谷物,含量约为22.0%[27,29],具体成分及功能特性见表3。穇子中的膳食纤维包含水溶性膳食纤维及水不溶性膳食纤维,水溶性纤维由非淀粉多糖组成,如β-葡聚糖和阿拉伯木聚糖,水不溶性纤维由木质素、纤维素、半纤维素和非淀粉多糖,如水不溶的阿拉伯木聚糖。基于穇子的高膳食纤维以及膳食纤维功能的多样性,许多研究者以穇子为研究对象,对穇子膳食纤维的提取工艺条件以及膳食纤维的组成进行了探究,旨在开发更高层次的功能性食品。如李悦洋等[30]采用乳酸菌发酵法,以保加利亚乳杆菌和嗜热链球菌为发酵剂,通过优化接种量、发酵时间、料液比等工艺参数提取穇子中膳食纤维,在最优实验条件下提取到水溶性膳食纤维提取的含量为18.58%。李泽秀等[31]运用超声辅助提取穇子中的多糖,最终提取率为23.82%,并对其进行了定性定量分析,实验结果表明穇子多糖主要成分为L-鼠李糖、D-葡糖糖醛酸和葡萄糖,其中L-鼠李糖含量最多。
2. 穇子功能特性
穇子中的功能成分具有抗氧化、降血糖、改善肠道健康、预防骨质疏松、抗衰老、降血脂、降血压等功能,具体见表4。
表 4 穇子的主要功能特性及其相关活性成分Table 4. Main functional properties and related functional components of finger millets2.1 抗氧化
穇子中发挥抗氧化作用的生物活性物质主要是多酚类物质、可溶性膳食纤维以及多肽等。穇子中的酚酸及其衍生物、类黄酮和单宁可作为还原剂、金属螯合剂和单线态氧淬灭剂[28]。酚类化合物作为抗氧化剂的效力源于它们通过苯环上的羟基将氢原子供奉给缺电子的自由基的能力,进而形成共振稳定且反应性较低的苯氧基自由基,抗氧化活性程度取决于酚环羟基化的位置和程度[28]。研究表明,穇子多酚对DPPH自由基、羟基自由基具有较强的清除作用,可有效延缓花生油氧化作用、龙眼的采后生理活动以及蛋黄酱中油脂的氧化[26,32−35]。Ofosu等[36]运用体外抗氧化实验评估穇子中的酚类物质的抗氧化性,研究发现穇子中提取可溶性和结合的酚类化合物对ABTS+和DPPH自由基具有较强的清除作用。有研究表明,穇子中的结合酚酸阿魏酸与阿拉伯木聚糖结合后的阿魏酰阿拉伯木聚糖被证明具有强大的抗氧化活性,不需要通过微生物群的作用被消化就能释放到结肠中发挥其活性[37]。Agrawal等[38]从穇子蛋白水解物中成功鉴定出两种新型的抗氧化肽为TSSSLNMAVRGGLTR和STTVGLGISMRSASVR,并对其抗氧化活性进行了表征,结果表明两种肽的潜在抗氧化活性是由丝氨酸和苏氨酸残基与自由基相互作用引起的。此外,不同品种的穇子抗氧化性存在一定差异,Xiang等[39]研究发现不同品种的穇子抗氧化的效果不同,在所有抗氧化性能评估中,白色品种的穇子抗氧化活性最低。
2.2 降血糖
穇子中的多酚类物质及膳食纤维具有一定的降血糖作用。据报道,经常食用由穇子制成的食物可以将空腹血糖降低32%,并消除43%的胰岛素抵抗[40]。体外实验表明,与常用的药物阿卡波糖相比,穇子中的可溶性酚类物质对α-葡萄糖苷酶和α-淀粉酶活性有明显的抑制作用,可以减少小肠中葡萄糖的释放和吸收,从而减轻餐后血糖反应[36]。通过建立动物模型试验,在链脲佐菌素诱导的糖尿病大鼠中,喂养含有20%的穇子种皮的饮食以及富含穇子的益生菌发酵乳都有显著的降血糖、降血脂作用,而且能有效改善其他糖尿病并发症,如暴食症和烦渴,其中富含穇子的益生菌发酵乳表现出与抗糖尿病药物二甲双胍相当的降糖作用[41−42]。此外,一项关于食用穇子对非胰岛素依赖型成人糖尿病患者高血糖的影响研究表明,食用基于穇子的饮食可使血糖水平显著降低[43]。穇子中含有大量膳食纤维,目前也被认为是降血糖的原因,在体内的消化较慢或不可消化,而且与可利用的碳水化合物形成不可吸收的复合物,导致碳水化合物的吸收延迟和吸收的绝对量的减少,从而最终控制餐后血糖飙升[27]。
2.3 改善肠道健康
穇子中含有大量的膳食纤维,膳食纤维被认为对肠道健康很重要,在食物中适量摄入高膳食纤维可以调节消化道菌群结构、促进消化、促进排便等作用[44]。可溶性膳食纤维可以在结肠发酵过程中被肠道菌群(拟杆菌和双歧杆菌)代谢以产生结肠短链脂肪酸,通过缓解肠道炎症,限制病原微生物的流行和控制肠道通透性来维持肠道稳态[45]。Sarma等[46]通过动物实验,用添加了从穇子中提取阿拉伯木聚糖(FM-AX)的饲料和高脂饲料(HFD)喂养小鼠,结果表明HFD喂养的小鼠盲肠缩小,FM-AX喂养的小鼠盲肠恢复了正常,并对盲肠中内容物进行分析分析,结果显示FM-AX喂养小鼠的盲肠细菌拟杆菌与厚壁菌比值增加增加,乳酸菌、双歧杆菌、玫瑰杆菌和拟杆菌的丰度增加,厚壁菌门和肠杆菌科的丰度降低。不溶性膳食纤维,如纤维素和半纤维素等,更容易被肠道微生物群进行结肠发酵,还有助于通过多种机制从肠道清除毒素[47],通过增加其持水能力来增加肠道蠕动[48]。乳糜症是最常见一种慢性自身免疫性肠道疾病,是由于摄入了麸质(一种存在于小麦、大麦和黑麦中的蛋白质)引起的免疫反应。穇子是一种无麸质的谷物,可以利用其该特性开发出无麸质的功能性食品[29]。
2.4 其他功能
穇子在预防心脏病、骨质疏松、降血压方面也有很重要的作用[9]。穇子中钙含量丰富,因此由穇子加工的产品可补充儿童生长发育所需的钙,也可以预防成年的骨质疏松及其它骨骼疾病[49]。另外,穇子中的非淀粉性阿拉伯木聚糖已被确定为可有效控制高脂肪饮食引起的血脂异常、肝脂质积累和葡萄糖耐量[46]。穇子还可以抑制胶原蛋白交联,从而可以通过降低肌腱、皮肤和血管中弹性组织的硬度来减缓衰老[50]。此外,有研究表明穇子的乙醇提取物通过抑制自发性高血压大鼠血管紧张素转换酶水平和增强抗氧化能力预防高血压[51]。
3. 穇子的开发应用
3.1 传统面制品
穇子味甘涩,粉碎后口感比较粗糙,且难以形成面筋网络结构,加工成型性差,不能像普通小麦粉那样按照正常配方和工艺加工成面制品[52]。目前研发的穇子产品多数是将穇子作为配料,添加到产品中,增加其营养价值。杨玉成等[53]添加了20%的穇子粉制作出来的穇子馒头色泽呈淡绛紫色、穇子风味浓郁,与未添加穇子粉的普通白馒头相比较,穇子馒头具有较好的体外抗氧化效果。此外,穇子面制品主要是通过添加谷朊粉、黄原胶等复配改良剂或工艺技术的方式提高穇子粉的品质,从而制备相应的面制品,使其具有高营养价值。梁卓然等[54]采用挤压膨化的改性处理方式得到预糊化穇子粉,并添加20%到普通面粉中,所得的面条的外观与烹调性能均高于一般面条,且口感较好,营养价值高。Dissanayake等[55]将穇子粉进行改性处理,用全穇子粉制作出的穇子面条的感官评价比添加50%的更高。穇子面制品具有较高的营养价值,但普遍存在穇子粉添加量低、科技含量低等问题,在后期产品开发过程中应选择合适的加工方式,提高穇子粉的添加量,开发更多具有功能性的产品。
3.2 烘焙制品
穇子烘焙制品主要是模仿小麦烘焙食品的种类与制作工艺,包括穇子面包、蛋糕、饼干等产品。母应春等[56]以红稗粉代替部分小麦粉,在最佳工艺下制作的蛋糕块形丰满、周正,口感细腻、松软,且营养丰富。谢晶等[57]加入20%穇子粉开发的饼干具有浓郁的穇子香味,口感松脆,后味持久。穇子通过加工处理后,可以提高穇子中的活性成分以及营养物的利用率,用其开发的产品口感及营养更加[58]。Patil等[59]在精制小麦粉中加入挤压过后的穇子粉,所制成的面包与未挤压面粉的复合面包相比,比容度更高,质地更加柔软,多酚含量和抗氧化活性显著提高。Mudau等[60]以穇子为原料,将穇子粉自然发酵后用于制作饼干,所得的无麸质穇子饼干蛋白质含量、碳水化合物含量、矿物质含量和抗氧化能力都得到了增加。当前穇子烘焙制品产品单一,而且穇子粉口感粗糙,影响穇子烘焙制品的品质,可与其他杂粮、果蔬等原料进行搭配开发更多产品,使穇子烘焙制品多元化。针对穇子粉口感粗糙的问题,可运用生物酶解技术等对穇子粉进行处理后,再进行产品开发,既保证产品营养,又能使口感得到改善。
3.3 发酵饮品
目前穇子发酵饮品有传统穇子白酒、穇子黄酒、穇子米酒、穇子啤酒、穇子饮料酒等低度发酵酒。穇子酒除了具备一般酒类的醇香外,还具有穇子特有的芳香风味。穇子酒的酿造工艺与其他谷物的酿造工艺类似,但由于其质地坚硬,存在其淀粉利用率低、出酒率低等问题,可通过改良其工艺或者选择优质的穇子作为原料来解决。刘明全[1]以穇子为原料,针对传统酿造穇子黄酒中存在原料利用率低、出酒率低等问题,运用现代黄酒酿造技术液态纯种发酵酿造穇子黄酒,确定最佳后发酵工艺为17 ℃条件下遮光发酵15 d,所得到穇子黄酒风味和口感较好,与传统工艺酿造的穇子黄酒相比,氨基酸含量高、挥发性成分更多。朱思洁等[61]以发芽穇子粒和黑糯米按比例混合为原料,通过固态发酵得到穇子黑糯米酒,酒味浓郁,酒体醇厚协调。在国外将穇子进行发酵制成啤酒或者甜饮料等,Kubo[62]发现东非地区会优先选用穇子来生产酒精饮料,主要是因为穇子中的α-淀粉酶活性要高于其他谷物。Khandelwal等[63]将绿葡萄,黑葡萄和苹果等混合果汁与穇子进行混合,使用啤酒酵母为发酵剂进行8~10 d的发酵,得到的酒精饮料具有良好的接受度以及稳定的货架期。
4. 结论与展望
随着人们生活水平的改善和对营养健康的追求,越来越倾向于一些杂粮消费,穇子作为一种高营养价值的谷物,也逐渐得到人们的关注。本文综述了近年来国内外对穇子的营养及功能成分和功能特性的研究以及产品开发利用的现状,目前在其营养成分的提取、加工及功能特性方面的研究已取得一定进展,并替代面粉或其他杂粮复配使用制作成各种面条、饼干、面包、蛋糕等,赋予产品更高的营养价值,此外通过发酵方式,开发了穇子黄酒、穇子黑糯米酒、穇子啤酒等。但相关文献的报道对穇子功能成分的研究不够全面,作用机制和作用方式尚未明晰,仍需进一步系统深入的研究。目前对穇子的开发研究处于初级阶段,加工方式和产品种类都相对比较单一,对其深加工的工艺也尚未见报道。
穇子含有丰富的营养价值,具有巨大的开发潜力,可将其应用于功能性食品的研发,有着广阔的前景。在功能成分方面,目前在对穇子的功能成分多集中于多酚类物质以及水溶性膳食纤维,且功效机制尚不明确。在今后可加深对其他功能成分的研究,并从深入探究其分子结构与作用机制,为穇子功能性产品的开发提供理论基础。在产品开发方面,穇子具有抗氧化、降血糖等功能,应充分发挥其功能作用,开发新的功能性食品;穇子存在味甘涩、口感粗糙的问题,在深入开发产品的过程中,应通过加工方式改善其口感,使其既保留穇子的营养价值,又有良好口感,开发出符合市场需求的新产品。
-
表 1 穇子与其他谷物营养成分
Table 1 Nutrient contents of finger millet and other grain
名称 印度
穇子[9]习水
红稗[15]西藏
龙爪稷[17−18]大米[19] 小麦[19] 小米[19] 淀粉(g/100 g) 72.00 68.20 58.00 77.90 75.20 75.10 蛋白质(g/100 g) 7.30 5.21 7.30 7.40 11.90 9.00 钙(mg/100 g) 344.00 208.50 225.95 13.00 34.00 41.00 钾(mg/100 g) 408.00 516.60 328.18 103.00 289.00 284.00 镁(mg/100 g) 137.00 181.60 140.39 34.00 4.00 107.00 铁(mg/100 g) 3.90 1.87 1.52 2.30 4.10 5.10 锌(mg/100 g) 2.31 − 1.39 1.70 2.33 1.87 注:“−”表示未测量。 表 2 穇子中多酚类化合物的类别
Table 2 Class of polyphenolic compounds in finger millets
表 3 穇子中膳食纤维的类别
Table 3 Class of dietary fiber in finger millets
表 4 穇子的主要功能特性及其相关活性成分
Table 4 Main functional properties and related functional components of finger millets
-
[1] 刘明全. 液态酿造鸡爪谷黄酒工艺研究[D]. 拉萨:西藏大学, 2020. [LIU M Q. Study on the process of liquid fermentation of finger millet wine brewing[D]. Lhasa:Tibet University, 2020.] LIU M Q. Study on the process of liquid fermentation of finger millet wine brewing[D]. Lhasa: Tibet University, 2020.
[2] KUMAR A, METWAL M, KAUR S, et al. Nutraceutical value of finger millet (Eleusine coracana (L.) Gaertn.), and their improvement using omics approaches[J]. Frontiers in Plant Science,2016,7:1−14.
[3] 李基光, 王艳兰, 汤睿. 湖南穇子创新利用与发展前景[J]. 安徽农业科学,2018,46(30):66−67. [LI J G, WANG Y L, TANG R. Innovative utilization and development prospect of finger millet in human[J]. Journal of Anhui Agricultural Sciences,2018,46(30):66−67.] doi: 10.3969/j.issn.0517-6611.2018.30.021 LI J G, WANG Y L, TANG R. Innovative utilization and development prospect of finger millet in human[J]. Journal of Anhui Agricultural Sciences, 2018, 46(30): 66−67. doi: 10.3969/j.issn.0517-6611.2018.30.021
[4] 赵丽兰, 杨子彪, 郭向周. 龙爪稷替代饲喂对荷斯坦奶牛奶质的影响初探[J]. 中国农业信息,2017(8):51−53. [ZHAO L L, YANG Z B, GUO X Z. Preliminary study on the effect of replacement feeding of Longclaw millet on milk quality of Holstein dairy cows[J]. China Agricultural Informatics,2017(8):51−53.] ZHAO L L, YANG Z B, GUO X Z. Preliminary study on the effect of replacement feeding of Longclaw millet on milk quality of Holstein dairy cows[J]. China Agricultural Informatics, 2017(8): 51−53.
[5] KUMAR S I, BABU C G. Anti-Nutritional factors in finger millet[J]. Journal of Nutrition & Food Sciences,2016,6(3):1−2.
[6] 卢绍闯, 秦石秀, 陈家丽, 等. 龙爪粟淀粉的提取及理化特性研究[J]. 中国粮油学报,2020,35(5):65−71. [LU S C, QIN S X, CHEN J L, et al. Extraction and physicochemical properties of finger millet starch[J]. Journal of the Chinese Cereals and Oils Association,2020,35(5):65−71.] LU S C, QIN S X, CHEN J L, et al. Extraction and physicochemical properties of finger millet starch[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(5): 65−71.
[7] JAYAWARDANA S A S, SAMARASEKERA J K R R, HETTIARACHCHI G H C M, et al. Dietary fibers, starch fractions and nutritional composition of finger millet varieties cultivated in Sri Lanka[J]. Journal of Food Composition and Analysis,2019,82:103249. doi: 10.1016/j.jfca.2019.103249
[8] 陈家丽, 刘婧洁, 肖攀飞, 等. 穇子抗性淀粉理化性质及体外消化研究[J]. 食品与机械,2020,36(12):24−27. [CHEN J L, LIU J J, XIAO P F, et al. Study on physicochemical properties and in vitro digestion of the resistant starch from Eleusina coracana (L.) Gaertn[J]. Food & Machinery,2020,36(12):24−27.] CHEN J L, LIU J J, XIAO P F, et al. Study on physicochemical properties and in vitro digestion of the resistant starch from Eleusina coracana (L.) Gaertn[J]. Food & Machinery, 2020, 36(12): 24−27.
[9] ABIOYE V F, BABARIDE G O, OGUNLAKIN G O, et al. Varietal and processing influence on nutritional and phytochemical properties of finger millet:A review[J]. Heliyon, 2022, 8(12).
[10] RAMASHIA S E, GWATA E T, MEDDOWS-TAYLOR S, et al. Some physical and functional properties of finger millet (Eleusine coracana) obtained in sub-Saharan Africa[J]. Food Research International,2018,104:110−118. doi: 10.1016/j.foodres.2017.09.065
[11] JAGATI P, MAHAPATRA I, DASH D. Finger millet (Ragi) as an essential dietary supplement with key health benefits:A review[J]. International Journal of Home Science,2021,7(2):94−100. doi: 10.22271/23957476.2021.v7.i2b.1152
[12] SAVITHA P M R, MURALIKRISHNA G. Arabinoxylan from finger millet (Eleusine coracana, Indaf 15) bran:purification and characterization[J]. Carbohydrate Polymers,2014,99:800−807. doi: 10.1016/j.carbpol.2013.08.079
[13] MUDAU M, RAMASHIA S E, MASHAU M E, et al. Physicochemical characteristics of bread partially substituted with finger millet (Eleusine corocana) flour[J]. Brazilian Journal of Food Technology,2021,24:e2020123. doi: 10.1590/1981-6723.12320
[14] SHOBANA S, KRISHNASWAMY K, SUDHA V, et al. Finger millet (Ragi, Eleusine coracana L.):A review of its nutritional properties, processing, and plausible health benefits[J]. Advances in Food and Nutrition Research,2013,69:1−39.
[15] 徐本刚, 苏伟. 红稗的营养成分分析[J]. 贵州农业科学, 2010, 38(9):76−77, 109. [XU B G, SU W, Nutrition components of bacca sedge[J]. Guizhou Agricultural Sciences, 2010, 38(9):76−77, 109.] XU B G, SU W, Nutrition components of bacca sedge[J]. Guizhou Agricultural Sciences, 2010, 38(9): 76−77, 109.
[16] UDEH H O, DUODU K G, JIDEANI A I O. Effect of malting period on physicochemical properties, minerals, and phytic acid of finger millet (Eleusine coracana) flour varieties[J]. Food Science & Nutrition,2018,6(7):1858−1869.
[17] 胡敏, 林亲录, 罗章, 等. 西藏青稞与鸡爪谷营养成分及风味成分的分析研究[J]. 食品工业科技,2016,37(14):49−53,58. [HU M, LIN Q L, LUO Z, et al. Analysis of nutrition compositions and volatile compounds of two cereals from Tibet[J]. Science and Technology of Food Industry,2016,37(14):49−53,58.] HU M, LIN Q L, LUO Z, et al. Analysis of nutrition compositions and volatile compounds of two cereals from Tibet[J]. Science and Technology of Food Industry, 2016, 37(14): 49−53,58.
[18] 池福敏, 幸塔, 辜雪冬, 等. 西藏察隅龙爪稷营养成分、重金属含量与农药残留分析[J]. 食品与发酵工业,2015,41(5):187−191. [CHI F M, XING T, GU X D, et al. Analysis of nutritional components, heavy metals and pesticide residues in Eleusine coracana Gaertn from Chayu county in Tibet[J]. Food and Fermentation Industries,2015,41(5):187−191.] CHI F M, XING T, GU X D, et al. Analysis of nutritional components, heavy metals and pesticide residues in Eleusine coracana Gaertn from Chayu county in Tibet[J]. Food and Fermentation Industries, 2015, 41(5): 187−191.
[19] 杨月欣. 中国食物成分表[M]. 北京:北京大学医学出版社, 2009. [YANG Y X, China food composition tables[M]. Beijing:Peking University Press, 2009.] YANG Y X, China food composition tables[M]. Beijing: Peking University Press, 2009.
[20] 马雪, 赵丹, 张瑞, 等. 多酚类化合物检测分析方法研究进展[J]. 食品安全质量检测学报,2021,12(11):4575−4582. [MA X, ZHAO D, ZHANG R, et al. Research progress on detection and analysis methods of polyphenols[J]. Journal of Food Safety & Quality,2021,12(11):4575−4582.] MA X, ZHAO D, ZHANG R, et al. Research progress on detection and analysis methods of polyphenols[J]. Journal of Food Safety & Quality, 2021, 12(11): 4575−4582.
[21] KUMARI D, MADHUJITH T, CHANDRASEKARA A. Comparison of phenolic content and antioxidant activities of millet varieties grown in different locations in Sri Lanka[J]. Food Science & Nutrition,2017,5(3):474−485.
[22] 解春芝. 红稗花青素提纯、鉴别及生物活性研究[D]. 贵阳:贵州大学, 2015. [XIE C Z. Study of extraction, purification, identification and biological activities of anthocyanidin from bacca sedge[D]. Guiyang:Guizhou University, 2015.] XIE C Z. Study of extraction, purification, identification and biological activities of anthocyanidin from bacca sedge[D]. Guiyang: Guizhou University, 2015.
[23] SIWELA M, TAYLOR J R N, DE MILLIANO W A J, et al. Occurrence and location of tannins in finger millet grain and antioxidant activity of different grain types[J]. Cereal Chemistry,2007,84(2):169−174. doi: 10.1094/CCHEM-84-2-0169
[24] 王乐, 王嘉琪, 卢绍闯, 等. 不同溶剂提取穇子多酚的组分分析及其稳定性研究[J]. 食品科技,2020,45(8):204−210. [WANG L, WANG J Q, LU S C, et al. Component analysis and stability on polyphenols extraction from finger millet with different solvents[J]. Food Science and Technology,2020,45(8):204−210.] WANG L, WANG J Q, LU S C, et al. Component analysis and stability on polyphenols extraction from finger millet with different solvents[J]. Food Science and Technology, 2020, 45(8): 204−210.
[25] SHOBANA S, MALLESHI N G. Preparation and functional properties of decorticated finger millet (Eleusine coracana)[J]. Journal of Food Engineering,2007,79(2):529−538. doi: 10.1016/j.jfoodeng.2006.01.076
[26] 王嘉琪, 王乐, 马丽娅, 等. 不同溶剂提取穇子多酚的抗氧化性及对龙眼保鲜作用的研究[J]. 中国粮油学报,2021,36(3):14−20. [WANG J Q, WANG L, MA L Y, et al. Antioxidant of finger millet polyphenols extracted from different solvents and its preservation effect on longan[J]. Journal of the Chinese Cereals and Oils Association,2021,36(3):14−20.] WANG J Q, WANG L, MA L Y, et al. Antioxidant of finger millet polyphenols extracted from different solvents and its preservation effect on longan[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(3): 14−20.
[27] UDEH H, DUODU G, JIDEANI A. Finger millet bioactive compounds, bioaccessibility, and potential health effects-a review[J]. Czech Journal of Food Sciences,2017,35(1):7−17. doi: 10.17221/206/2016-CJFS
[28] DEVI P B, VIJAYABHARATHI R, SATHYABAMA S, et al. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber:A review[J]. Journal of Food Science and Technology,2014,51(6):1021−1040. doi: 10.1007/s13197-011-0584-9
[29] 王双辉, 陈致印, 谢晶, 等. 穇子营养成分及功能利用研究进展[J]. 食品工业科技,2017,38(13):329−334. [WANG S H, CHEN Z Y, XIE J, et al. Research progress in nutrient composition, function and utilization of finger millet[J]. Science and Technology of Food Industry,2017,38(13):329−334.] WANG S H, CHEN Z Y, XIE J, et al. Research progress in nutrient composition, function and utilization of finger millet[J]. Science and Technology of Food Industry, 2017, 38(13): 329−334.
[30] 李悦洋, 王双辉, 贺魏, 等. 穇子膳食纤维的提取工艺研究[J]. 粮食与油脂,2022,35(12):133−136. [LI Y Y, WANG S H, HE W, et al. Study on extraction technology of dietary fiber from Eleusine coracana (L.) Gaertn[J]. Cereals & Oils,2022,35(12):133−136.] LI Y Y, WANG S H, HE W, et al. Study on extraction technology of dietary fiber from Eleusine coracana (L.) Gaertn[J]. Cereals & Oils, 2022, 35(12): 133−136.
[31] 李泽秀. 红稗多糖的分离纯化及其生物活性的探究[D]. 贵阳:贵州大学, 2016. [LI Z X. Study on separation, purification and bioactivity of polysaccharides from Bacca Sedge[D]. Guiyang:Guizhou University, 2016.] LI Z X. Study on separation, purification and bioactivity of polysaccharides from Bacca Sedge[D]. Guiyang: Guizhou University, 2016.
[32] 黄月, 向海芹, 王双辉, 等. 穇子多酚的分离纯化及其抗氧化能力研究[J]. 食品工业,2023,44(1):42−46. [HUANG Y, XIANG H Q, WANG S H, et al. Studies of antioxidant capacity of polyphenols in Ragi after isolation and purification[J]. The Food Industry,2023,44(1):42−46.] HUANG Y, XIANG H Q, WANG S H, et al. Studies of antioxidant capacity of polyphenols in Ragi after isolation and purification[J]. The Food Industry, 2023, 44(1): 42−46.
[33] 王双辉, 张丽, 钟嫒嫒, 等. 龙爪稷多酚超声辅助双水相提取工艺及其抗氧化活性研究[J]. 食品与机械,2017,33(11):161−166,83. [WANG S H, ZHANG L, ZHONG Y Y, et al. The extraction of finger millet polyphenols by using ultrasound-assisted aqueous two-phase and its antioxidant activity[J]. Food & Machinery,2017,33(11):161−166,83.] WANG S H, ZHANG L, ZHONG Y Y, et al. The extraction of finger millet polyphenols by using ultrasound-assisted aqueous two-phase and its antioxidant activity[J]. Food & Machinery, 2017, 33(11): 161−166,83.
[34] BALASUBRAMANIAM V G, SATHVIKA S, AYYAPPAN P, et al. Improved oxidative stability of peanut oil through addition of finger millet (Eleusine coracana) seed coat polyphenols[J]. Journal of Food Process Engineering, 2020, 43(3): e13194.
[35] VELUR B G, SUKUMAR S, ALAGARSAMY M, et al. Inhibition of lipid oxidation in mayonnaise by finger millet seed coat polyphenols[J]. Journal of the American Oil Chemists' Society,2022,99(1):79−90. doi: 10.1002/aocs.12557
[36] OFOSU F K, ELAHI F, DALIRI E B, et al. Phenolic profile, antioxidant, and antidiabetic potential exerted by millet grain varieties[J]. Antioxidants (Basel),2020,9(3):254. doi: 10.3390/antiox9030254
[37] RAO R S, MURALIKRISHNA G. Water soluble feruloyl arabinoxylans from rice and ragi:Changes upon malting and their consequence on antioxidant activity[J]. Phytochemistry,2006,67(1):91−99. doi: 10.1016/j.phytochem.2005.09.036
[38] AGRAWAL H, JOSHI R, GUPTA M. Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate[J]. Food Research International,2019,120:697−707. doi: 10.1016/j.foodres.2018.11.028
[39] XIANG J, APEA-BAH F B, NDOLO V U, et al. Profile of phenolic compounds and antioxidant activity of finger millet varieties[J]. Food Chemistry,2019,275:361−368. doi: 10.1016/j.foodchem.2018.09.120
[40] CHANDRA D, CHANDRA S, PALLAVI, et al. Finger millet (Eleusine coracana (L.) Gaertn):A power house of health benefiting nutrients, a review[J]. Food Science & Human Wellness,2016,5(3):149−155.
[41] CHAUDHARY J K, MUDGAL S. Antidiabetic and hypolipidaemic action of finger millet (Eleusine coracana)-Enriched probiotic fermented milk:An in vivo rat study[J]. Food Technology and Biotechnology,2020,58(2):192−202. doi: 10.17113/ftb.58.02.20.6308
[42] SHOBANA S, HARSHA M R, PLATEL K, et al. Amelioration of hyperglycaemia and its associated complications by finger millet (Eleusine coracana L.) seed coat matter in streptozotocin-induced diabetic rats[J]. British Journal of Nutrition,2010,104(12):1787−1795. doi: 10.1017/S0007114510002977
[43] LAKSHMI K P, SUMATHI S. Effect of consumption of finger millet on hyperglycemia in non-insulin dependent diabetes mellitus (NIDDM) subjects[J]. Plant Foods Human Nutrition,2002,57(3):205−213.
[44] ESHAK E S, ISO H, DATE C, et al. Dietary fiber intake is associated with reduced risk of mortality from cardiovascular disease among japanese men and women[J]. Journal of Nutrition,2010,140(8):1445−1453. doi: 10.3945/jn.110.122358
[45] KAIMAL A M, MUJUMDAR A S, THORAT B N. Resistant starch from millets:Recent developments and applications in food industries[J]. Trends in Food Science & Technology,2021,111:563−580.
[46] SARMA S M, SINGH D P, SINGH P, et al. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis[J]. International Journal of Biological Macromolecules,2018,106:994−1003. doi: 10.1016/j.ijbiomac.2017.08.100
[47] SINGH V, LEE G, SON H, et al. Anti-diabetic prospects of dietary bio-actives of millets and the significance of the gut microbiota:A case of finger millet[J]. Frontiers in Nutrition, 2022, 9: 1056445.
[48] BASEN M, KURRER S E. A close look at pentose metabolism of gut bacteria[J]. FEBS Journal,2021,288(6):1804−1808. doi: 10.1111/febs.15575
[49] KUMAR A, GOEL B, KARTHIKEYAN S, et al. Protein and calcium rich malted health drink power[J]. Journal of Food Processing and Technology,2013,4(3):1−6.
[50] HEGDE P S, CHANDRAKASAN G, CHANDRA T S. Inhibition of collagen glycation and crosslinking in vitro by methanolic extracts of Finger millet (Eleusine coracana) and Kodo millet (Paspalum scrobiculatum)[J]. The Journal of Nutritional Biochemistry,2002,13(9):517−521. doi: 10.1016/S0955-2863(02)00171-7
[51] PARK S Y, JEONG E W, YANG Y S, et al. Finger millet ethanol extracts prevent hypertension by Inhibiting the angiotensin-converting enzyme level and enhancing the antioxidant capacity in spontaneously hypertensive rats[J]. Antioxidants (Basel),2021,10(11):1766. doi: 10.3390/antiox10111766
[52] 杨新生, 翟小童, 谭斌, 等. 加工方式对全谷物粳米制品体外消化特性的影响[J]. 粮油食品科技,2017,25(2):5−10. [YANG X S, ZHAI X T, TAN B, et al. Effects of processing methods on the in vitro digestion characteristics of rice products[J]. Science and Technology of Cereals, Oils and Foods,2017,25(2):5−10.] doi: 10.3969/j.issn.1007-7561.2017.02.002 YANG X S, ZHAI X T, TAN B, et al. Effects of processing methods on the in vitro digestion characteristics of rice products[J]. Science and Technology of Cereals, Oils and Foods, 2017, 25(2): 5−10. doi: 10.3969/j.issn.1007-7561.2017.02.002
[53] 杨玉成, 肖莲荣, 罗育才, 等. 穇子馒头生产工艺及体外抗氧化性研究[J]. 食品安全质量检测学报,2022,13(3):753−758. [YANG Y C, XIAO L R, LUO Y C, et al. Study on the production process and antioxidant activity in vitro of Eleusine coracana steamed bread[J]. Journal of Food Safety & Quality,2022,13(3):753−758.] doi: 10.3969/j.issn.2095-0381.2022.3.spaqzljcjs202203010 YANG Y C, XIAO L R, LUO Y C, et al. Study on the production process and antioxidant activity in vitro of Eleusine coracana steamed bread[J]. Journal of Food Safety & Quality, 2022, 13(3): 753−758. doi: 10.3969/j.issn.2095-0381.2022.3.spaqzljcjs202203010
[54] 梁卓然, 苏伟, 母应春. 挤压红稗营养面条的加工工艺研究[J]. 食品科技,2014,39(2):162−166. [LIANG Z R, SU W, MU Y C. Quality improvement of nutrition noodle with Baccage sedge by twin-screw extrusion[J]. Food Science and Technology,2014,39(2):162−166.] LIANG Z R, SU W, MU Y C. Quality improvement of nutrition noodle with Baccage sedge by twin-screw extrusion[J]. Food Science and Technology, 2014, 39(2): 162−166.
[55] DISSANAYAKE B D M P B, JAYAWARDENA H S. Development of a method for manufacturing noodles from finger millet[J]. Procedia Food Science,2016,6:293−297. doi: 10.1016/j.profoo.2016.02.058
[56] 母应春, 姜丽, 陈旭, 等. 红稗蛋糕的制作工艺及营养价值研究[J]. 现代食品,2019(1):161−167. [MU Y C, JIANG L, CHEN X, et al. Study on the production and nutritional value of bacca sedge cake[J]. Modern Food,2019(1):161−167.] MU Y C, JIANG L, CHEN X, et al. Study on the production and nutritional value of bacca sedge cake[J]. Modern Food, 2019(1): 161−167.
[57] 谢晶, 余书奇, 张旺, 等. 穇子黄精韧性饼干的研制[J]. 保鲜与加工,2021,21(8):76−81. [XIE J, YU S Q, ZHANG W, et al. Processing technology of toughness biscuits with finger millet and Polygonatum cyrtonema Hua[J]. Storage and Process,2021,21(8):76−81.] XIE J, YU S Q, ZHANG W, et al. Processing technology of toughness biscuits with finger millet and Polygonatum cyrtonema Hua[J]. Storage and Process, 2021, 21(8): 76−81.
[58] 胡帅, 高金燕, 武涌, 等. 发芽粟米研究进展[J]. 中国粮油学报,2019,34(1):138−146. [HU S, GAO J Y, WU Y, et al. Research progress on germinated millets[J]. Journal of the Chinese Cereals and Oils Association,2019,34(1):138−146.] HU S, GAO J Y, WU Y, et al. Research progress on germinated millets[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(1): 138−146.
[59] PATIL S S, RUDRA S G, VARGHESE E, et al. Effect of extruded finger millet (Eleusine coracan L.) on textural properties and sensory acceptability of composite bread[J]. Food Bioscience,2016,14:62−69. doi: 10.1016/j.fbio.2016.04.001
[60] MUDAU M, MASHAU M E, RAMASHIA S E. Nutritional quality, antioxidant, microstructural and sensory properties of spontaneously fermented gluten-free finger millet biscuits[J]. Foods,2022,11(9):1265. doi: 10.3390/foods11091265
[61] 朱思洁, 苏伟, 刘莉. 红稗黑糯米混合发酵酒的工艺研究[J]. 食品研究与开发,2018,39(13):105−109. [ZHU S J, SU W, LIU L. Study on the process of bacca sedge and black glutinous rice wine by mixed fermentation[J]. Food Research and Development,2018,39(13):105−109.] doi: 10.3969/j.issn.1005-6521.2018.13.019 ZHU S J, SU W, LIU L. Study on the process of bacca sedge and black glutinous rice wine by mixed fermentation[J]. Food Research and Development, 2018, 39(13): 105−109. doi: 10.3969/j.issn.1005-6521.2018.13.019
[62] KUBO R. The reason for the preferential use of finger millet (Eleusine coracana) in eastern African brewing[J]. Journal of the Institute of Brewing,2016,122(1):175−180. doi: 10.1002/jib.309
[63] KHANDELWAL P, UPENDRA R S, KAVANA U, et al. Preparation of blended low alcoholic beverages from under-utilized millets with zero waste processing methods[J]. International Journal of Fermented Foods,2012,1(1):77−86.