• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于金属有机框架材料的农产品中农兽药残留快速检测与去除研究进展

张馨懿, 张孝渊, 孙淑媛, 王柳, 王洪梅, 徐霞红, 张鑫, 何开雨

张馨懿,张孝渊,孙淑媛,等. 基于金属有机框架材料的农产品中农兽药残留快速检测与去除研究进展[J]. 食品工业科技,2024,45(16):404−417. doi: 10.13386/j.issn1002-0306.2023090086.
引用本文: 张馨懿,张孝渊,孙淑媛,等. 基于金属有机框架材料的农产品中农兽药残留快速检测与去除研究进展[J]. 食品工业科技,2024,45(16):404−417. doi: 10.13386/j.issn1002-0306.2023090086.
ZHANG Xinyi, ZHANG Xiaoyuan, SUN Shuyuan, et al. Research Progress on Rapid Detection and Removal of Pesticide and Veterinary Drug Residues in Agricultural Products Based on Metal-Organic Frameworks[J]. Science and Technology of Food Industry, 2024, 45(16): 404−417. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090086.
Citation: ZHANG Xinyi, ZHANG Xiaoyuan, SUN Shuyuan, et al. Research Progress on Rapid Detection and Removal of Pesticide and Veterinary Drug Residues in Agricultural Products Based on Metal-Organic Frameworks[J]. Science and Technology of Food Industry, 2024, 45(16): 404−417. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090086.

基于金属有机框架材料的农产品中农兽药残留快速检测与去除研究进展

基金项目: 浙江省重点研发计划项目(2020C02023);标准化生产示范创建“一县一品一策”重大专项(ZJNY2022001-006)。
详细信息
    作者简介:

    张馨懿(1999−),女,硕士研究生,研究方向:农产品中风险物质快速检测,E-mail: zhangxinyi919@foxmail.com

    通讯作者:

    张鑫(1986−),男,博士,副教授,研究方向:食品生物技术,E-mail:zhangxin@nbu.edu.cn

    何开雨(1984−),男,博士,副研究员,研究方向:农产品质量与安全,E-mail:hekaiyu@zaas.ac.cn

  • 中图分类号: TS207.3

Research Progress on Rapid Detection and Removal of Pesticide and Veterinary Drug Residues in Agricultural Products Based on Metal-Organic Frameworks

  • 摘要: 农产品中农兽药残留的检测与去除是食品安全风险防控的重要环节。目前检测农兽药残留的方法主要是仪器分析法,但存在检测时间长、操作要求高等不足,无法满足快速检测的需求。金属有机框架(Metal-Organic Frameworks,MOFs)是一种由金属离子或金属簇与有机配体构成的杂化材料,其具备吸附富集、催化降解、可发荧光及产生电化学信号等功能,因而具有良好的潜力应用于农兽药残留的快速检测与去除。本文阐述了MOFs材料的富集去除、催化降解、荧光传感和电化学传感四种功能,总结了基于MOFs的不同功能开发的农兽药残留快速检测与去除方法,综合分析了结合RGB分析技术与便携式监测设备后的优势与不足,讨论了MOFs应用于农兽药残留检测与去除的挑战。本文为MOFs快速检测技术的进一步发展提供参考。
    Abstract: Detecting and removing pesticide and veterinary drug residues in agricultural products are important for ensuring food safety. Current methods for detecting pesticide residues are mainly relied on sophisticated instruments, which require long detection time and skilled operators, limiting their accessibility. Metal-Organic Frameworks (MOFs) are a hybrid material composed of metal ions/clusters and organic ligands. MOFs possess multiple functions such as adsorption enrichment, catalytic degradation, and fluorescent and electrochemical signal generation. Therefore, MOFs have great potential in rapidly detecting and removing pesticide and veterinary drug residues. This review introduces functionalities of MOFs: Enrichment and removal, catalytic degradation, fluorescence sensing, and electrochemical sensing, and then summarizes their applications for rapid detecting and removing pesticide and veterinary drug residues. Additionally, this article comprehensively analyzes the advantages and disadvantages about combining RGB analysis and portable monitoring devices with MOFs. Also, the challenges of applying MOFs to detecting and removing pesticide and veterinary drug residue are discussed. Overall, this paper provides a reference for developing techniques to rapidly detect and remove containments in agricultural products.
  • 农兽药在防治农业病虫害方面发挥着不可替代的作用。然而,农兽药的不合理使用会导致农产品中农兽药残留超标和生态环境污染。长期食用农兽药残留超标的农产品会导致急性、慢性中毒[1],加重器官负担,损害人体健康[23]。因此,加强农产品和环境中农兽药残留的检测,对防控农兽药残留超标、保障农产品质量安全与人体健康具有重要意义。目前,检测农兽药残留常用的方法主要为仪器分析法,包括液相色谱-串联质谱(Liquid Chromatography-tandem mass spectrometry,LC-MS/MS)、气相色谱-串联质谱(GC-MS/MS)、超高效液相色谱(High Performance Liquid Chromatography,HPLC)等。这些大型仪器检测方法灵敏度高、准确性好,但检测时间长,操作要求高,无法满足快速检测的需求。近年来,酶联免疫吸附测定法(Enzyme-Linked ImmunoSorbent Assay,ELISA)、胶体金免疫层析法等快速检测方法取得了长足的发展并得到应用,但检测稳定性不高,且定量检测性能较差。因此,研究开发快速、稳定的农兽药残留检测方法仍然非常必要。

    金属有机框架(Metal-Organic Frameworks,MOFs)是由中心金属离子与有机配体配位组成的杂化多孔材料。MOFs具有高表面积[4]、孔隙结构[5]、可调控的结构[67],使其具备吸附富集、催化降解、可发光及产生电化学信号等功能[8]。相比其他纳米材料,MOFs具有结构可调和性能稳定等优势[9]。将MOFs与其他纳米材料结合,可以拓展其在吸附富集、传感检测和有毒化学物质催化降解的等领域的应用[10],因此,在农兽药残留的检测和消除方面具有良好的应用前景。

    近年来,基于MOFs的传感器引起了广泛关注,利用MOFs的催化、光学和电化学性能,可直接或间接实现农兽药残留的定量检测,同时利用MOFs的吸附富集功能可以高效地去除农兽药。如图1所示,本文介绍了MOFs材料的富集去除、催化降解、荧光传感和电化学传感四种功能,总结了基于MOFs上述功能开发的农兽药残留快速检测与去除方法,归纳了结合红绿蓝(Red Green Blue,RGB)分析技术和便携式检测设备的快速检测体系,分析了各类方法的优势和不足,并讨论了MOFs材料未来应用于农兽药残留检测与吸附去除的前景与挑战。

    图  1  MOFs的农产品中农兽药残留快速检测与去除研究进展
    注:3,3',5,5'-四甲基联苯胺(3,3',5,5'-Tetramethylbenzidine,TMB),氧化型3,3',5,5'-四甲基联苯胺(Oxidized 3,3',5,5'-Tetramethylbenzidine,oxTMB),玻碳电极(Glassy carbon electrode,GCE),差分脉冲伏安法(Differential pulse voltammetry,DPV)。
    Figure  1.  Research progress on field rapid detection and removal of pesticide and veterinary drug residues in agricultural products by MOFs

    MOFs通过金属离子与配体配位,形成紧密的网状结构,不同MOFs的网状结构具有不同大小的孔径和表面积[11]。MOFs的表面积在1000~10000 m2/g左右[12],常用于吸附的MOFs类别有ZIFs、UiOs、MILs等[12]。利用MOFs的一些官能团[12]如-OH、-COOH、-NH2等与农兽药的特殊基团键位结合,通过静电相互作用、π-π堆叠、氢键等方式可以特异性吸附农兽药[13]。与常规多孔材料(如沸石、碳基材料和二氧化硅)相比,MOFs的孔隙率更高,吸附效果更强,可重复利用性更好。提高MOFs的吸附富集效率的方式有:a.在MOFs合成中掺杂多种金属阳离子[1415]。由于多种金属阳离子对配体的竞争,改变MOFs有机配体和中心金属离子的配位类型,增加了活性位点与比表面积,掺杂的金属增强了吸附剂与被吸附物的相互作用;b.改变MOFs的晶体结构[16]。通过改变MOFs的合成方式调整晶体结构,提高晶体缺陷,提升孔隙率,产生丰富的活性位点。

    仪器分析是最主要的食品中农兽药残留检验检测方法,为避免检测样品的基质干扰,在检测前需要进行样品前处理[17]。其中MOFs作为固相萃取的新型材料,利用其丰富的孔隙过滤基质中脂肪色素等大分子化合物,通过π-π堆叠、氢键等多种相互作用与农兽药结合。不仅能吸附残留的农兽药分子,还能对残留的农兽药预浓缩,实现农兽药的低浓度检测。MOFs作为固相萃取材料,具有吸附时间短、吸附效率高、重复利用率高等优势。Almohana等[18]结合氧化石墨烯(Graphene oxide,GO)与MOF-801合成了MOF-801/GO吸附剂,用于气相色谱-火焰光度法(Gas chromatography-Flame photometric detector,GC-FPD)检测的样品前处理。如图2A所示,将MOF-801/GO加入含有机磷农药(Organophosphorus Pesticides,OPs)的匀浆基质中,MOF-801/GO能够特异性吸附OPs,经过离心分离与解吸,实现OPs GC-FPD检测前处理的吸附富集。该方法仅需5 min即可完成对OPs的吸附,使得检出限可达0.1~1.1 μg/kg。Zhang等[13]合成了一种可同时吸附四种拟除虫菊酯农药的材料UiO-66,发现它可特异性吸附脂溶性农药。将其应用于鲜榨果汁溶液中拟除虫菊酯农药的吸附,经过优化后UIO-66在2 min内即完成农药的吸附。Mao等[19]以UiO-66为吸附剂,用于食用油中OPs仪器检测前的吸附富集,UiO-66可重复利用10次以上。

    图  2  基于MOFs吸附作用的农兽药检测与去除应用
    注:A. MOFs固相吸附剂用于有机硫农药GC-FPD检测[18];B. MOFs固相吸附剂吸附去除甲草胺[22]
    Figure  2.  Application of detection and removal of pesticide and veterinary drugs based on MOFs adsorption

    农兽药残留的去除也是控制农兽药残留危害的重要一环,吸附去除法具有简单快速,不产生二次污染等优势,近年来被广泛应用于农兽药去除研究中。MOFs拥有明确的吸附位点和多孔结构,常用来作为农兽药等有毒物质的去除剂[20]。MOFs功能材料能够与其他的材料相结合,通过改变孔隙来提高吸附效率。近年来基于吸附功能的MOFs吸附剂快速富集与去除农兽药的研究进展如表1所示。Alizadeh等[21]合成了Zn基MOFs材料MOF-508,并将其涂覆在不锈钢丝上,合成了一种具有纳米棒结构和孔隙结构的纤维,用于小麦中二嗪酮和毒死蜱的吸附去除。由于可调的孔隙率,萃取时间极大的缩短,且在连续70次重复萃取后,其萃取效率都没有显著降低,具有非常优异的可重复性。部分MOFs能够同时完成检测与吸附去除。Jia等[22]以火龙果状核壳结构为灵感,以海藻酸钠为凝胶基底,合成了一种表层用于检测、内部吸附去除的MOFs凝胶胶囊,用于甲草胺的同时检测与去除。如图2B所示,Zn2+与5-((4 ' -(咪唑-1-基)苄基)氧)异苯二甲酸(5-((4′-(imidazol-1-yl)benzyl)oxy)isophthalic acid,H2dbia)合成Zn-dbia,Zn-dbia构成胶囊的凝胶外壳,利用Zn-dbia荧光特性和吸附能力检测与捕捉甲草胺;ZIF-8构成胶囊的凝胶内芯,利用ZIF-8的良好的吸附能力吸附去除甲草胺。该火龙果结构的凝胶胶囊对甲草胺的最大吸附量达到61.1 mg/g。

    表  1  基于吸附功能的MOFs吸附剂快速富集与去除农兽药研究进展
    Table  1.  Research progress on rapid enrichment and removal of pesticide and veterinary drugs by MOFs adsorbent based on adsorption function
    吸附作用类型 MOFs 实际样品 检测目标物 检测限或最大吸附量 参考文献
    吸附富集 MOF-801/GO 农业用水 马拉硫磷
    毒死蜱
    0.363 nmol/L
    0.285 nmol/L
    [18]
    UiO-66 果汁 联苯菊酯
    氯氟氰菊酯
    氯菊酯
    氰戊菊酯
    3.557 nmol/L
    1.778 nmol/L
    2.30 nmol/L
    2.382 nmol/L
    [13]
    UiO-66 植物油 敌敌畏
    氧乐果
    马拉硫磷
    甲硫磷
    0.724 nmol/L
    6.805 nmol/L
    0.726 nmol/L
    1.007 nmol/L
    [19]
    吸附去除 HP-Fe-CF3 水、苹果、黄瓜 氟虫腈
    氟啶蜱脲
    氟乐灵
    564.9 mg/g
    564.9 mg/g
    564.9 mg/g
    [23]
    ZIF-8/Zn-dbia/SA 农业用水 甲草胺 61.1 mg/g [22]
    下载: 导出CSV 
    | 显示表格

    MOFs的催化能力来源于MOFs的催化位点。如图3A所示,MOFs的催化活性位点来源有以下几个[5]:a.金属离子或金属簇与连接体上的位点;b.修饰后的嫁接位点;c.MOFs复合材料中的包封位点;d.热学化学转化时MOFs衍生物中的生成位点。MOFs中金属中心(通常为过渡金属离子)和有机配体之间的配位作用可以调控金属中心的物理化学性质,如电子结构和酸碱性性质。这些特性可以优化反应底物与活性位点之间的相互作用,从而促进催化反应的进行[24]。MOFs具有高度有序的孔道结构,可提供大量的活性位点和通道,能够容纳小分子底物,并通过扩散和分子筛效应来加速反应速率。MOFs的孔道结构还可以提高催化剂的稳定性和选择性,因为它可以选择性地限制某些反应物进入催化剂内部,防止不必要的副反应的发生。

    图  3  基于MOFs催化作用的原理和农兽药检测去除应用
    注:A. 催化活性位点[5];B. 基于MOFs纳米酶催化用于OPs检测[32];C. 基于MOFs光催化降解毒死蜱[37]
    Figure  3.  Based on the principle of MOFs catalysis and the application of detection and removal of pesticide and veterinary drugs.

    具有催化性能的MOFs表现出类似于酶的催化功能,可称为MOFs纳米酶。常见的MOFs纳米酶根据催化类型可分为几种:类过氧化物酶[2526]、类氧化酶[27]、类超氧化物歧化酶[28]、类水解酶[29]和多功能酶[30]。其中类氧化酶为最常见的类酶类型。一些不具有催化能力的MOFs可通过其多孔网状结构固定天然酶,以获得催化能力。与天然酶相比,合成的天然酶MOFs材料提高了天然酶的稳定性和利用率。近年来基于催化功能的MOFs传感器快速检测与降解农兽药研究进展如表2所示。Zhong等[31]利用铁基的MOFs包封葡萄糖氧化酶(Glucose oxidase,GOD),合成MOF-545(Fe),热稳定性是游离酶的2.3倍,在反复使用后仍能有71%的活性。与传统的化学催化剂相比,MOFs具有其独特的优点:a.MOFs结构可根据催化需要调整结构与位点;b.孔隙环境(亲水性和疏水性)利于底物和产物的识别和运输;c.MOFs可结合其他催化剂共同作用,显著提高催化效率[12]

    表  2  基于催化功能的MOFs传感器快速检测与降解农兽药研究进展
    Table  2.  Research progress on rapid detection and degradation of pesticide and veterinary drugs by MOFs sensor based on catalytic function
    催化作用类型 MOFs 实际样品 检测目标物 检测限与去除能力 参考文献
    纳米酶催化 ZIF-8
    ZIF-67
    豇豆、芹菜 甲拌磷
    丙溴磷
    氧乐果
    0.614 nmol/L
    0.428 nmol/L
    0.141 nmol/L
    [32]
    MOF-818 灌溉水 毒死蜱 0.742 nmol/L [33]
    降解去除 DDT-UiO66-NH2@MF 灌溉水 对氧磷 80%以上 [34]
    TiO2/Fe-MOF 四环素 97% [35]
    Fe CDs/MOF-808 白菜 对氧磷
    对硫磷
    [36]
    CuFe2O4/MIL-101(Fe)(CFO/MIL) 毒死蜱 95% [37]
    下载: 导出CSV 
    | 显示表格

    具有类过氧化物酶活性的MOFs可催化H2O2氧化3,3',5,5'-四甲基联苯胺(3,3',5,5'-Tetramethylbenzidine,TMB),生成氧化型TMB(Oxidized TMB,oxTMB),产生颜色变化。Shen等[32]以ZIF-8和ZIF-67为前体,合成了具有磁性的Fe-Co磁性纳米粒子和Fe-N-C纳米酶。如图3B所示,氨基功能化Fe-Co纳米粒子和Fe-N-C纳米酶分别用羧化适配体和互补链进行修饰。当OPs存在时,OPs与互补链竞争适体,适体优先结合OPs,结合的双链被打开。利用磁分离将FeN-C纳米酶转移到上清液中并催化TMB与H2O2产生颜色变化,从而对OPs定量检测。该传感器在最优条件下对甲拌磷、丙溴磷、异碳磷和氧乐果4种农药检出限分别为0.16、0.16和0.03 μg/kg。Chai等[33]将MOF-818和掺杂Fe3+的PMOF(Fe)组合合成具有两种类酶活性的MOFs纳米酶MOF-818@PMOF(Fe),MOF-818可以催化3,5-二叔丁基邻苯二酚(3,5-Ditert-butyl catechol ,3,5-DTBC)产生H2O2,PMOF(Fe)催化H2O2使TMB显色。利用上述原理构建的毒死蜱检测传感器,检出限可达0.742 nmol/L(0.26 μg/kg)。

    催化降解农兽药是控制其残留危害的重要手段,其中,光催化法是重要的农兽药残留降解方法之一。光催化法是指将太阳能转化为其他类型的化学能的一种绿色环保的技术,通过催化吸收太阳能转化为化学能降解目标物。MOFs因其特殊的网状结构与和多结合位点使其成为具有研究价值的光催化材料。农兽药溶液与MOFs接触后,利用光能激发MOFs上的电子,产生活性氧物质(如羟基自由基、超氧阴离子自由基等),这些活性氧物质能够与农兽药分子发生氧化还原反应,将其分解为无害的物质。Yu等[34]将修饰-NH2的UiO-66粘附在海绵表面,通过二硫苏糖醇(Dithiothreitol,DDT)改性,合成了可光催化降解对氧磷的材料DDT-UiO66-NH2@MF。该材料经过10次反复挤压后,仍具有良好的降解性能。Tian等[37]采用简单的溶剂热法制备CuFe2O4/MIL-101(Fe)(CFO/MIL)磁性复合材料,CuFe2O4的加入扩大了MIL-101(Fe)的光响应范围。如图3C所示,MIL-101(Fe)与CuFe2O4形成Z-型结构,促进了e/h+的有效分离,产生更多的h+参与了毒死蜱的直接氧化,h+可将毒死蜱光解为CO2、PO43-和H2O。在模拟阳光照射60 min后,对毒死蜱的降解率达到95.0%。结合其他具有降解能力的材料能显著提高MOFs降解能力,其中金属氧化物(如TiO2[38])能够提升光生电子的转移速度,加速目标物转变为自由基,提高催化降解效率,是提高MOFs基光催化剂光催化活性的优秀助催化剂。Feizpoor等[35]结合TiO2与Fe基MOFs,合成了一种n-n异质结TiO2/Fe-MOF光催化剂,在可见光照射下,TiO2/Fe-MOF对四环素的去除效果可达到97%,是纯TiO2的11倍。

    MOFs的荧光基于电荷和能量变化,由中心金属-配体电荷转移引起[39]。主要原理是通过激发其内部的荧光发光中心,使其产生发光效应。MOFs材料中的荧光发光中心主要是由金属离子、金属团簇和配体组成,这些发光单元之间的相互作用可调节荧光强弱[40]。当MOFs材料受到激发时,其内部的荧光发光中心吸收能量,从基态跃迁到激发态能级,导致能量的释放和荧光发射。近年来研究人员开发了许多基于荧光作用的MOFs荧光传感器。MOFs的荧光传感机理来源于与目标物结合后电荷的转移和能量变化,目标物与MOFs相互作用,改变其发光特性。MOFs的荧光传感机理主要类型有分子内电荷转移(Intramolecular charge transfer,ICT)[41]、光致电子转移(Photoelectron transfer,PET)[42]、荧光共振能量转移(Fluorescence resonance energy transfer,FRET)[43]、荧光内滤效应(Inner filter effect,IFE)[44]。各类荧光传感原理图如图4所示。PET是指电子从供体转移到激发态荧光团,使荧光团荧光受到抑制而减弱[42]。ICT是指目标物与具有吸电子或供电子基团的MOFs结合后,引发MOFs自身电荷转移,导致蓝移或红移的发光变化[45]。FRET是指供体基团的发射光谱与受体基团的吸收发射光谱相重叠,且两个荧光团距离合适时,供体基团在激发状态下会向受体基团转移能量,使供体基团荧光减弱[43]。IFE是指供体基团的吸收光谱与受体基团的荧光激发或发射光谱重叠时,受体基团激发或发射荧光能量会被供体基团吸收,导致荧光减弱[44]

    图  4  MOFs荧光传感原理示意图[45]
    注:A. PET荧光传感;B. ICT荧光传感;C. FRET荧光传感;D. IFE荧光传感。
    Figure  4.  Schematic diagram of MOFs fluorescence sensing principle.

    荧光传感检测具有灵敏度高、检出限低等优势,近年来被广泛关注[46]。MOFs具有良好的荧光传感潜力,是开发快速检测农兽药残留方法的优良材料。近年来基于荧光传感的MOFs传感器快速检测农兽药研究进展如表3所示。根据MOFs与客体分子结合后荧光信号的变化不同,MOFs荧光传感器类型可以分为荧光淬灭、荧光增强和比率荧光,其中主要类型为荧光淬灭。

    表  3  基于荧光传感的MOFs传感器快速检测农兽药的研究进展
    Table  3.  Research progress of MOFs sensor for rapid detection of pesticide and veterinary drugs based on fluorescence sensing
    荧光传感类型 MOFs 实际样品 检测目标物 检测限 参考文献
    荧光淬灭 ZnPO-MOFs 灌溉水 甲基对硫磷 0.456 nmol/L(0.12 μg/kg) [42]
    Zr-MOF 豇豆 甲基对硫磷 0.438 nmol/L(0.11 μg/kg) [47]
    Zr-LMOFs 大米、苹果 甲基对硫磷 18.80 nmol/L(4.95 μg/kg) [51]
    Al-MOF 牛奶 呋喃酮 0.53 μmol/L(0.12 mg/kg) [52]
    Al-MOF 鸡蛋 四环素
    土霉素
    20.4 nmol/L(9.07 μg/kg)
    25.4 nmol/L(10.7 μg/kg)
    [53]
    MOF-Apt@MIP 鱼肉 孔雀石绿 0.27 nmol/L(0.10 μg/kg) [54]
    荧光增强 Eu-MOF 牛肉、牛奶 四环素 39.8 nmol/L(17.7 μg/kg) [55]
    Tb-MOF 黄瓜 毒死蜱 0.114 nmol/L(0.04 μg/kg) [50]
    Tb-MOF 黄瓜、卷心菜、
    猕猴桃、苹果
    毒死蜱 3.80 nmol/L(1.33 μg/kg) [56]
    AuNCs@ZIF 白菜 毒死蜱 0.57 nmol/L(0.20 μg/kg) [49]
    Zn-MOF 蜂蜜、牛奶 四环素 17.0 nmol/L(7.56 μg/kg) [57]
    Zn-BTEC 鱼肉 金霉素 28 nmol/L(13.4 μg/kg) [48]
    比率荧光
    MIL-53 苹果、梨、桃子 福美双 0.46 μmol/L(0.11 mg/kg) [58]
    HNU-48 土壤 甲草胺 2.11 nmol/L(0.57 μg/kg) [53]
    Cu-MOF 苹果、梨、番茄 甲基托布津 3.67 nmol/L(1.27 μg/kg) [59]
    AuCuNCs@MOF 牛奶 四环素 4.80 nmol/L(2.13 μg/kg) [60]
    CDs@HZIF-8 牛奶 四环素
    土霉素
    多西环素
    6.56 nmol/L(2.92 μg/kg)
    29.5 nmol/L(13.7 μg/kg)
    30.6 nmol/L(13.6 μg/kg)
    [61]
    下载: 导出CSV 
    | 显示表格

    荧光淬灭是指MOFs与检测目标物结合后,MOFs激发能量转移至目标物,导致MOFs荧光强度减弱的现象。基于上述原理,近年来研究人员开发了许多MOFs传感检测方法,这些方法具有灵敏度高、选择性高、响应时间快等显著优势。He等[47]结合Zr4+和1,2,4,5-四(4-羧基苯基)苯配体,制备了在水中稳定发光的MOFs荧光材料Zr-LMOF,用于富集和原位检测豇豆表面的甲基对硫磷。如图5A所示,合成的Zr-LMOF具有高荧光强度。将Zr-LMOF添加在含有甲基对硫磷的蔬菜表面,基于光致电子转移原理,甲基对硫磷可显著淬灭Zr-LMOF荧光。Zr-LMOF对甲基对硫磷的检出限为0.438 nmol/L(0.12 μg/kg)。

    图  5  基于MOFs荧光传感的农兽药残留检测的应用
    注:A. 基于MOFs荧光淬灭的甲基对硫磷荧光传感器[48];B. 基于MOFs荧光增强检测金霉素荧光传感器[49]
    Figure  5.  Application of pesticide and veterinary drug residue detection based on MOFs fluorescence sensor.

    荧光增强是指MOFs与目标物结合后,通过空间限制效应、电荷转移等原因导致MOFs荧光强度增强的现象。Xu等[49]合金纳米团簇AuNCs与ZIFs,合成了具有聚集诱导效应AuNCs@ZIF,基于OPs对乙酰胆碱酯酶(Acetylcholinesterase,AChE)的活性抑制响应,AuNCs@ZIF的荧光强度与毒死蜱浓度呈正向线性关系,检出限为0.57 nmol/L(0.2 μg/kg)。Zhang等[50]制备了Tb-MOF,利用OPs对AChE的活性抑制作用,开发了在黄瓜和自来水中OPs检测体系,对毒死蜱的检出限为0.114 nmol/L(0.04 μg/kg)。Yu等[48]合成了一种MOFs材料Zn-BTEC,用于金霉素的灵敏检测。如图5B所示,Zn-BTEC具有微弱的荧光,加入金霉素后,由于聚集诱导发射效应,Zn-BTEC立即产生黄绿色的强荧光。该方法对金霉素的检出限为28.0 nmol/L。

    比率荧光是一种基于荧光强度比值的检测方法,基本原理是利用两种不同波长上的荧光信号,其中一个作为参比信号,另一个作为响应信号,对特定波长处的荧光强度取比值,获得响应信号。该方法可以减小外界因素的干扰,检测结果更准确。MOFs可以结合客体发光物质(镧系金属[62]、荧光染料[63]、碳点(Carbon dots,CDs)[64]、量子点[65])以获得参比信号荧光[66]。Wang等[58]将罗丹明(Rhodamine B,RhB)偶联到混合MOFs材料表面,合成了RhB/NH2-MIL-53。以RhB荧光为参比信号,RhB/NH2-MIL-53通过荧光共振能量转移、静电相互作用和光致电子转移的猝灭机理,设计了一种福美双的比率荧光检测体系,在10 min内快速识别福美双,检测限为0.46 μmol/L(0.11 mg/kg)。Yu等[59]结合Cu-MOF与CDs构建了双发射比率荧光探针CDs@Cu-MOFs,用于甲基托布津的检测。甲基托布津与被封闭的CDs竞争Cu2+配位位点,导致Cu-MOFs配体被释放,CDs荧光恢复,CDs@Cu-MOFs产生比率荧光变化,该方法对甲基托布津的检出限为3.67 nmol/L(1.27 μg/kg)。

    MOFs的电化学性能与内部结构和界面修饰有关。MOFs具有高孔隙率和高比表面积,它们能够提供更多的反应活性位点,并且能够扩大电荷传输界面,增强电化学反应速率。近年来基于电化学传感的MOFs传感器快速检测农兽药研究进展如表4所示。Shi等[67]以ZIF-67前驱体为原料,在ZIF-67表面引入了介孔结构和Co结合硫氰尿酸(Thiocyanuric acid,TCA)的复合壳结构,合成了新型纳米Co-MOF材料CoTCA@ZIF-67。与ZIF-67相比,Co-TCA@ZIF-67的电化学还原活性大大增强。MOFs中金属离子或金属簇的选择和配体的选择可以调控电子传导和离子传输的性能。选择合适的配体也可以调节MOFs的孔径和孔隙结构,提升电子传输速率。Shu等[68]合成了富铁FeCoNi-MOF,5:1:1的Fe、Co、Ni比例使该MOFs产生更多的活性晶面,加速了电子转移,产生的氧化还原电流最大,表面电子扩散电阻最小。MOFs还可以通过掺杂或修饰来改善其电化学性能。掺入导电性高的杂原子(如N[69]、S)可以增强MOFs的导电性能,从而提高电化学反应速率。Zhao等[69]将N原子掺杂进Cu基的MOFs中,经过化学蚀刻合成了一种多孔空心纳米笼(HPH-N-Cu NCs),掺杂N原子的纳米笼比与未掺杂N原子的纳米笼电子传递电阻更小。如图6A所示,HPH-N-Cu NCs滴铸在玻碳电极上,并滴加AchE,经过全氟磺酸隔膜封闭后,利用差分脉冲伏安法检测甲胺磷。当存在甲胺磷时,甲胺磷会抑制AchE的催化活性,产生的电流就会降低,反之电流会增强。该方法对甲胺磷的检出限为1.83×10−13 mol/L。

    表  4  基于电化学传感的MOFs传感器快速检测农兽药研究进展
    Table  4.  Research progress of MOFs sensor based on electrochemical sensing for rapid detection of pesticide and veterinary drugs
    MOFs 实际样品 检测目标物 检测限 参考文献
    富铁FeCoNi-MOF 苹果、鲜茶叶、番茄和黄瓜 吡虫啉 0.04 pmol/L [68]
    MnCo2O4.5HoQS-MPs 白菜 久效磷
    甲胺磷
    西维因
    1.82×10−14 mol/L
    1.62×10−14 mol/L
    1.58×10−14 mol/L
    [70]
    HPH-N-Cu NCs 农业用水 甲胺磷 1.83×10−13 mol/L [69]
    Mxene/ CNHs/β-CDMOFs 番茄 多菌灵 1.00 nmol/L [71]
    Co-TCA@ZIF-67 水产养殖水 呋喃它酮 12.0 nmol/L [67]
    Apt@NH 2 -UiO-66 牛奶 四环素 9.792 pmol/L [72]
    ErGO/Cu-MOF/PtNPs 四环素 0.03 μmol/L [73]
    下载: 导出CSV 
    | 显示表格
    图  6  基于MOFs电化学性能的农兽药残留检测应用
    注:A. 基于掺杂N原子的MOFs电化学传感器检测甲胺磷[70];B. MOFs结合GO的电化学传感器检测百草枯[75]
    Figure  6.  Application of pesticide and veterinary drug residue detection based on MOFs electrochemical performance

    MOFs与其他纳米材料(如GO、Mxene、金纳米颗粒(Au nanoparticles,AuNPs)等)结合不仅能进增加电极的比表面积,提升电极反应效率,还能提高电极的耐久性与稳定性,延长电极的使用寿命。Tu等[71]结合Mxene与MOFs材料,合成Mxene/碳纳米角/β-环糊精金属有机框架(Mxene/CNHs/β-CD-MOFs)的纳米结构被用作多菌灵农药测定的电化学传感平台。MXene/CNHs具有大的比表面积、大量的可用活性位点和高电导率,为电化学传感器提供了更多的传感通道,增强了多菌灵的传质能力和催化作用,检出限为1.0 nmol/L(0.19 μg/kg)。Shu等[74]Ti-MOF与GO结合,制备了NH2-MIL-125(Ti)/RGO。如图6B所示,将NH2-MIL-125(Ti)/RGO固定在玻碳电极上,合成了用于检测百草枯的NH2-MIL-125(Ti)/RGO电极。GO的加入改善了电极表面结构的电荷转移、稳定性和粘附性。利用差分脉冲伏安法检测百草枯,该检测体系的百草枯检出限为50 nmol/L(9.315 μg/kg)。Zhang等[75]在Fe基MOFs中掺入AuNP,合成了符合纳米材料AuNPs/P-MOF,AuNPs/P-MOF活性表面积和电子转移能力显著提升。AuNPs/P-MOF修饰妥布霉素适配体后,适配体与妥布霉素竞争杂交亚甲基蓝修饰的互补DNA链,产生显著的电流响应。基于此原理开发了检测妥布霉素的电化学传感器,检测限为56 pmol/L(26.2 ng/kg)。

    基于MOFs的吸附去除、催化、荧光、优良电化学传感等功能,当前开发的检测方法具有响应快速、灵敏度高、线性范围宽等优势,虽然MOFs传感器在检测农兽药检测与去除研究中具有一定的潜力,但也存在一定局限性。MOFs传感器的检测场景需要在实验室,这使得现场快速检测变得困难。针对MOFs传感器在现场快速检测农兽药残留方面的限制,结合RGB分析技术与便携式检测设备能够很好的解决。

    RGB技术指的是基于红、绿、蓝三种基本颜色的光谱分析技术。通过光源发射出不同波长的红、绿、蓝三种光,并通过传感器收集这些光的强度信息,实现对目标物质的分析与判断。随着智能手机应用功能的发展,市场上已经有许多RGB分析应用软件。MOFs传感器结合智能手机RGB分析,能够帮助繁琐的实验室检测场景转变为现场检测,从而克服了传统检测的局限性[7879]。且不需要连接到复杂的信号识别设备,仅需智能手机自带的摄像头就可捕捉色相变化,实现农兽药残留的现场快速检测[8081]。Liu等[82]通过简单的一步水热法合成了Eu-TFPA-MOF,并应用于氟虫腈的荧光检测。氟虫腈可与Eu-TFPA-MOF的静态荧光猝灭和激发能的竞争性吸收产生的荧光变化,同时设计了一种简单、便携、低成本的智能手机辅助测试条,用于真实茶叶样品中氟虫腈的视觉检测。检出限为4.4 nmol/L(1.92 μg/kg)。Zhao等[76]以Zn基MOFs材料Zn-TCPE。如图7A所示,在水中由于水分子的配位破坏了Zn-TCPE的晶体框架,Zn-TCPE浸泡后会坍塌成不整齐的碎片,导致荧光颜色变暗,加入妥布霉素后,妥布霉素的亲水性官能团会促使结构坍的Zn-TCPE的AIE有机连接体被释放并重新组装,使Zn-TCPE荧光强度增强。基于该荧光检测体系开发了研制了一种便携式发光纸基分析装置。在紫外灯下,当添加不同量的妥布霉素时,试纸的发光色调从深蓝色变为青色。用智能手机拍摄不同浓度妥布霉素的荧光图片,并用RGB分析应用软件提取RGB值,通过RGB比值与浓度的线性关系拟合,定量检测妥布霉素,检出限为5 μmol/L(2.34 mg/kg)。

    图  7  MOFs传感器结合RGB分析与便携式检测设备用于农兽药残留的现场快速检测
    注:A. MOFs结合RGB分析快速检测妥布霉素[77];B. MOFs结合便携式氟选择电极快速检测卡那霉素和氯霉素[78]
    Figure  7.  MOFs sensor combined with RGB analysis and portable detection equipment is used for on-site rapid detection of pesticide and veterinary drug residues.

    便携式检测设备是指可以携带和操作的小型化检测设备,可在不同场合进行检测。便携式检测设备具有简单易用的操作界面,可以通过无线通信等方式实时传输数据,方便用户监测和分析检测结果。市面上的掌上检测设备有血糖仪、血氧仪、便携式氟选择电极等[8386]。便携式检测设备具有以下优势:a.小巧轻便易于携带,检测设备无需固定电源;b.获得检测结果速度快;c.操作省时省力,无需专业培训;d.成本低廉。MOFs传感器结合便携式检测设备可以更高效、便捷和准确的检测农兽药残留。Zhang等[87]结合Co-MOF和AuNPs,通过Au-S键附着T2合成 Au@MOF/T2探针,通过将啶虫脒含量转换为葡萄糖消耗量,利用掌上血糖仪对啶虫脒进行定量检测,检出限低至0.42 nmol/L(93.5 μg/kg)。Huang等[77]基于封装F离子的MOF(NMOF)和标记适配体制备了新型信号探针。如图7B所示,NMOF通过结合互补链固定在搅拌棒上。互补链与检测目标物的竞争结合适配体,通过便携式氟选择电极对测定释放的F离子含量即可定量检测目标物浓度。利用上述方法检测卡那霉素和氯霉素,检测时间仅需30 s,检出限分别为0.35 nmol/L(0.17 μg/kg)和0.46 nmol/L(0.15 μg/kg)。

    农兽药残留超标危害农产品质量与安全,不仅造成农业经济效益损失,还会危害到人体健康。因此建立准确快速稳定的农兽药残留检测体系极其重要。MOFs具备吸附富集、催化降解、可发光及产生电化学信号等功能,基于上述MOFs功能开发的农兽药残留检测与去除方法具有检测灵敏度高、检测响应快速、去除效果优异等优势,在农产品质量安全监管检测方面具有显著的应用潜力。MOFs传感器结合RGB分析技术和便携式检测设备,能更高效、便捷和准确的检测农兽药残留,满足现场快速检测需求。尽管基于MOFs的检测方法已取得良好的发展,但在检测农兽药残留方面仍面临许多挑战。

    首先,结合大型仪器用于快速检测仍存在诸多限制,如操作需要专业人员,无法满足现场检测需求等,在后续研究中可使用便携式检测仪(如便携式质谱检测仪或便携式拉曼光谱检测仪等)以克服传统检测方法的局限,构建可在种植、养殖基地现场使用的更便捷、通用性更强的分析方法。

    其次,MOFs的检测性能易受环境改变(pH、温度、所处环境介质状态等)、暴露于自然光下可能会出现光漂白现象,影响检测结果,因此需要进一步开发性能更加稳定、更抗干扰的新型MOFs材料。

    除上述问题以外,农产品中农兽药检测的性能要求逐渐提高。结合便携式检测设备能够进一步扩大检测应用范围,但随着生产实际的需求不断提高,检测性能要求也随之不断提升,检测应用环境要从实验室转变为种植、养殖基地,检测需求从有损检测提升至无损检测或原位检测,基于以上需求,通过结合柔性可穿戴器件、微流控芯片技术、机器学习与人工智能技术等新兴技术,有助于开发更加便捷、易操作、可满足现场无损或原位检测需求的检测传感器体系。

    在不久的将来,通过开发先进的传感策略,农兽药残留的快速检测技术将得到改善,相信基于MOFs的农兽药残留检测技术将在实际应用中发挥重要的作用。

  • 图  1   MOFs的农产品中农兽药残留快速检测与去除研究进展

    注:3,3',5,5'-四甲基联苯胺(3,3',5,5'-Tetramethylbenzidine,TMB),氧化型3,3',5,5'-四甲基联苯胺(Oxidized 3,3',5,5'-Tetramethylbenzidine,oxTMB),玻碳电极(Glassy carbon electrode,GCE),差分脉冲伏安法(Differential pulse voltammetry,DPV)。

    Figure  1.   Research progress on field rapid detection and removal of pesticide and veterinary drug residues in agricultural products by MOFs

    图  2   基于MOFs吸附作用的农兽药检测与去除应用

    注:A. MOFs固相吸附剂用于有机硫农药GC-FPD检测[18];B. MOFs固相吸附剂吸附去除甲草胺[22]

    Figure  2.   Application of detection and removal of pesticide and veterinary drugs based on MOFs adsorption

    图  3   基于MOFs催化作用的原理和农兽药检测去除应用

    注:A. 催化活性位点[5];B. 基于MOFs纳米酶催化用于OPs检测[32];C. 基于MOFs光催化降解毒死蜱[37]

    Figure  3.   Based on the principle of MOFs catalysis and the application of detection and removal of pesticide and veterinary drugs.

    图  4   MOFs荧光传感原理示意图[45]

    注:A. PET荧光传感;B. ICT荧光传感;C. FRET荧光传感;D. IFE荧光传感。

    Figure  4.   Schematic diagram of MOFs fluorescence sensing principle.

    图  5   基于MOFs荧光传感的农兽药残留检测的应用

    注:A. 基于MOFs荧光淬灭的甲基对硫磷荧光传感器[48];B. 基于MOFs荧光增强检测金霉素荧光传感器[49]

    Figure  5.   Application of pesticide and veterinary drug residue detection based on MOFs fluorescence sensor.

    图  6   基于MOFs电化学性能的农兽药残留检测应用

    注:A. 基于掺杂N原子的MOFs电化学传感器检测甲胺磷[70];B. MOFs结合GO的电化学传感器检测百草枯[75]

    Figure  6.   Application of pesticide and veterinary drug residue detection based on MOFs electrochemical performance

    图  7   MOFs传感器结合RGB分析与便携式检测设备用于农兽药残留的现场快速检测

    注:A. MOFs结合RGB分析快速检测妥布霉素[77];B. MOFs结合便携式氟选择电极快速检测卡那霉素和氯霉素[78]

    Figure  7.   MOFs sensor combined with RGB analysis and portable detection equipment is used for on-site rapid detection of pesticide and veterinary drug residues.

    表  1   基于吸附功能的MOFs吸附剂快速富集与去除农兽药研究进展

    Table  1   Research progress on rapid enrichment and removal of pesticide and veterinary drugs by MOFs adsorbent based on adsorption function

    吸附作用类型 MOFs 实际样品 检测目标物 检测限或最大吸附量 参考文献
    吸附富集 MOF-801/GO 农业用水 马拉硫磷
    毒死蜱
    0.363 nmol/L
    0.285 nmol/L
    [18]
    UiO-66 果汁 联苯菊酯
    氯氟氰菊酯
    氯菊酯
    氰戊菊酯
    3.557 nmol/L
    1.778 nmol/L
    2.30 nmol/L
    2.382 nmol/L
    [13]
    UiO-66 植物油 敌敌畏
    氧乐果
    马拉硫磷
    甲硫磷
    0.724 nmol/L
    6.805 nmol/L
    0.726 nmol/L
    1.007 nmol/L
    [19]
    吸附去除 HP-Fe-CF3 水、苹果、黄瓜 氟虫腈
    氟啶蜱脲
    氟乐灵
    564.9 mg/g
    564.9 mg/g
    564.9 mg/g
    [23]
    ZIF-8/Zn-dbia/SA 农业用水 甲草胺 61.1 mg/g [22]
    下载: 导出CSV

    表  2   基于催化功能的MOFs传感器快速检测与降解农兽药研究进展

    Table  2   Research progress on rapid detection and degradation of pesticide and veterinary drugs by MOFs sensor based on catalytic function

    催化作用类型 MOFs 实际样品 检测目标物 检测限与去除能力 参考文献
    纳米酶催化 ZIF-8
    ZIF-67
    豇豆、芹菜 甲拌磷
    丙溴磷
    氧乐果
    0.614 nmol/L
    0.428 nmol/L
    0.141 nmol/L
    [32]
    MOF-818 灌溉水 毒死蜱 0.742 nmol/L [33]
    降解去除 DDT-UiO66-NH2@MF 灌溉水 对氧磷 80%以上 [34]
    TiO2/Fe-MOF 四环素 97% [35]
    Fe CDs/MOF-808 白菜 对氧磷
    对硫磷
    [36]
    CuFe2O4/MIL-101(Fe)(CFO/MIL) 毒死蜱 95% [37]
    下载: 导出CSV

    表  3   基于荧光传感的MOFs传感器快速检测农兽药的研究进展

    Table  3   Research progress of MOFs sensor for rapid detection of pesticide and veterinary drugs based on fluorescence sensing

    荧光传感类型 MOFs 实际样品 检测目标物 检测限 参考文献
    荧光淬灭 ZnPO-MOFs 灌溉水 甲基对硫磷 0.456 nmol/L(0.12 μg/kg) [42]
    Zr-MOF 豇豆 甲基对硫磷 0.438 nmol/L(0.11 μg/kg) [47]
    Zr-LMOFs 大米、苹果 甲基对硫磷 18.80 nmol/L(4.95 μg/kg) [51]
    Al-MOF 牛奶 呋喃酮 0.53 μmol/L(0.12 mg/kg) [52]
    Al-MOF 鸡蛋 四环素
    土霉素
    20.4 nmol/L(9.07 μg/kg)
    25.4 nmol/L(10.7 μg/kg)
    [53]
    MOF-Apt@MIP 鱼肉 孔雀石绿 0.27 nmol/L(0.10 μg/kg) [54]
    荧光增强 Eu-MOF 牛肉、牛奶 四环素 39.8 nmol/L(17.7 μg/kg) [55]
    Tb-MOF 黄瓜 毒死蜱 0.114 nmol/L(0.04 μg/kg) [50]
    Tb-MOF 黄瓜、卷心菜、
    猕猴桃、苹果
    毒死蜱 3.80 nmol/L(1.33 μg/kg) [56]
    AuNCs@ZIF 白菜 毒死蜱 0.57 nmol/L(0.20 μg/kg) [49]
    Zn-MOF 蜂蜜、牛奶 四环素 17.0 nmol/L(7.56 μg/kg) [57]
    Zn-BTEC 鱼肉 金霉素 28 nmol/L(13.4 μg/kg) [48]
    比率荧光
    MIL-53 苹果、梨、桃子 福美双 0.46 μmol/L(0.11 mg/kg) [58]
    HNU-48 土壤 甲草胺 2.11 nmol/L(0.57 μg/kg) [53]
    Cu-MOF 苹果、梨、番茄 甲基托布津 3.67 nmol/L(1.27 μg/kg) [59]
    AuCuNCs@MOF 牛奶 四环素 4.80 nmol/L(2.13 μg/kg) [60]
    CDs@HZIF-8 牛奶 四环素
    土霉素
    多西环素
    6.56 nmol/L(2.92 μg/kg)
    29.5 nmol/L(13.7 μg/kg)
    30.6 nmol/L(13.6 μg/kg)
    [61]
    下载: 导出CSV

    表  4   基于电化学传感的MOFs传感器快速检测农兽药研究进展

    Table  4   Research progress of MOFs sensor based on electrochemical sensing for rapid detection of pesticide and veterinary drugs

    MOFs 实际样品 检测目标物 检测限 参考文献
    富铁FeCoNi-MOF 苹果、鲜茶叶、番茄和黄瓜 吡虫啉 0.04 pmol/L [68]
    MnCo2O4.5HoQS-MPs 白菜 久效磷
    甲胺磷
    西维因
    1.82×10−14 mol/L
    1.62×10−14 mol/L
    1.58×10−14 mol/L
    [70]
    HPH-N-Cu NCs 农业用水 甲胺磷 1.83×10−13 mol/L [69]
    Mxene/ CNHs/β-CDMOFs 番茄 多菌灵 1.00 nmol/L [71]
    Co-TCA@ZIF-67 水产养殖水 呋喃它酮 12.0 nmol/L [67]
    Apt@NH 2 -UiO-66 牛奶 四环素 9.792 pmol/L [72]
    ErGO/Cu-MOF/PtNPs 四环素 0.03 μmol/L [73]
    下载: 导出CSV
  • [1] 申焕杰. 市售蔬果中农药残留的危害、检测技术及质量控制概述[J]. 现代食品,2023,29(2):133−135. [SHEN H J. Harm, detection technology and quality control of pesticide residues in commercial vegetables and fruits[J]. Food Science and Technology,2023,29(2):133−135.]

    SHEN H J. Harm, detection technology and quality control of pesticide residues in commercial vegetables and fruits[J]. Food Science and Technology, 2023, 29(2): 133−135.

    [2]

    ABBASI JORJANDI M, ASADIKARAM G, ABOLHASSANI M, et al. Pesticide exposure and related health problems among family members of farmworkers in southeast Iran. A case-control study[J]. Environmental Pollution,2020,267:115424. doi: 10.1016/j.envpol.2020.115424

    [3]

    TRELLU C, OLVERA V H, MOUSSET E, et al. Electrochemical technologies for the treatment of pesticides[J]. Current Opinion in Electrochemistry,2021,26:100−677.

    [4]

    PASCANU V, GONZÁLEZ M G, INGE A K, et al. Metal-organic frameworks as catalysts for organic synthesis:A critical perspective[J]. Journal of the American Chemical Society,2019,141(18):7223−7234. doi: 10.1021/jacs.9b00733

    [5]

    LI D, XU H Q, JIAO L, et al. Metal-organic frameworks for catalysis:state of the art, challenges, and opportunities[J]. EnergyChem,2019,1(1):100005. doi: 10.1016/j.enchem.2019.100005

    [6]

    CUI Y J, LI B, HE H Y, et al. Metal–organic frameworks as platforms for functional materials[J]. Accounts of Chemical Research,2016,49(3):483−493. doi: 10.1021/acs.accounts.5b00530

    [7]

    LIU J T, HUANG J, ZHANG L, et al. Multifunctional metal–organic framework heterostructures for enhanced cancer therapy[J]. Chemical Society Reviews,2021,50:1188−1218. doi: 10.1039/D0CS00178C

    [8]

    MANDAL S, NATARAJAN S, MANI P, et al. Post-synthetic modification of metal–organic frameworks toward applications[J]. Advanced Functional Materials,2020,31(4):2006291.

    [9]

    AHMED I, MONDO L M M H, JUNG M J, et al. MOFs with bridging or terminal hydroxo ligands:Applications in adsorption, catalysis, and functionalization[J]. Coordination Chemistry Reviews,2023,475:214912. doi: 10.1016/j.ccr.2022.214912

    [10]

    MOHAN B, PRIYANKA, SINGH G, et al. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection[J]. Journal of Hazardous Materials 2023, 453:131324.

    [11]

    AHMED I, LEE H J, JHUNG S H. Covalent-organic polymer-derived carbons:An effective adsorbent to remove sulfonamide antibiotics from water[J]. Chemical Engineering Journal,2022,437:135386. doi: 10.1016/j.cej.2022.135386

    [12]

    VERMA C, RASHEED T, ANWAR M T, et al. From metal-organic frameworks (MOFs) to metal-doped MOFs (MDMOFs):current and future scenarios in environmental catalysis and remediation applications[J]. Microchemical Journal,2023,192:108954. doi: 10.1016/j.microc.2023.108954

    [13]

    ZHANG Q Q, ZHAO J X, XIE R F, et al. A simple and efficient method for determining the pyrethroid pesticide residues in freshly squeezed fruit juices using a water stable metal–organic framework[J]. Microchemical Journal, 2023, 187.

    [14]

    FULLER J, AN Q, FORTUNELLI A, et al. Reaction mechanisms, kinetics, and improved catalysts for ammonia synthesis from hierarchical high throughput catalyst design[J]. Accounts of Chemical Research,2022,55(8):1124−1134. doi: 10.1021/acs.accounts.1c00789

    [15]

    YANG J M, YANG B C, ZHANG Y, et al. Rapid adsorptive removal of cationic and anionic dyes from aqueous solution by a Ce(III)-doped Zr-based metal–organic framework[J]. Microporous and Mesoporous Materials,2020,292:109764. doi: 10.1016/j.micromeso.2019.109764

    [16]

    HAN L Z, QIN P G, LI M Y, et al. Hierarchically porous zirconium-based metal–organic frameworks for rapid adsorption and enrichment of sulfonamide antibiotics[J]. Chemical Engineering Journal, 2023, 456.

    [17]

    WANG Z X, HU S, BAO H H, et al. Immunochromatographic assay based on time-resolved fluorescent nanobeads for the rapid detection of sulfamethazine in egg, honey, and pork[J]. Journal of the Science of Food and Agriculture,2020,101(2):684−692.

    [18]

    ALMOHANA A I, ALMOJIL S F, ALALI A F, et al. The elimination and extraction of organosulfur compounds from real water and soil samples using metal organic framework/graphene oxide as a novel and efficient nanocomposite[J]. Chemosphere,2023,319:137950. doi: 10.1016/j.chemosphere.2023.137950

    [19]

    MAO X J, YAN A P, WAN Y Q, et al. Dispersive solid-phase extraction using microporous sorbent UIO-66 coupled to gas chromatography-tandem mass spectrometry:A quechers-type method for the determination of organophosphorus pesticide residues in edible vegetable oils without matrix interference[J]. Journal of Agricultural and Food Chemistry,2019,67(6):1760−1770. doi: 10.1021/acs.jafc.8b04980

    [20]

    LEFTON J B, PEKAR K B, HARIS U, et al. Defect formation and amorphization of Zn-MOF-74 crystals by post-synthetic interactions with bidentate adsorbates[J]. Journal of Materials Chemistry A,2021,9(35):19698−19704. doi: 10.1039/D0TA10613E

    [21]

    ALIZADEH R, ARBANDI F, KASHEFOLGHETA S, et al. A new generation of solid-phase microextraction based on breathing of metal organic framework nanorods MOF-508 for the determination of diazinon and chlorpyrifos in wheat samples[J]. Microchemical Journal, 2021, 171.

    [22]

    JIA W W, ZHANG J, FAN R Q, et al. A pitaya-inspired modular cylindrical MOF-based capsule design for pesticide signal probes[J]. ACS Applied Materials & Interfaces,2023,15(8):11163−11174.

    [23]

    CHANG Y, YAN X. Trifluoromethyl-modified hierarchical nanoporous metal–organic framework nanoparticles for adsorption of fluorine-containing pesticides[J]. ACS Applied Nano Materials,2022,5(4):5268−5277. doi: 10.1021/acsanm.2c00306

    [24]

    SUN J Q, TAO L, YE C L, et al. MOF-derived Ru1Zr1/Co dual-atomic-site catalyst with promoted performance for fischer–tropsch synthesis[J]. Journal of the American Chemical Society,2023,145(13):7113−7122. doi: 10.1021/jacs.2c09168

    [25]

    KOMKOVA MARIA A, KARYAKINA ELENA E, KARYAKIN ARKADY A. Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase[J]. Journal of the American Chemical Society,2018,140(36):11302−11307. doi: 10.1021/jacs.8b05223

    [26]

    TIAN Y M, BU T, ZHANG M, et al. Metal-polydopamine framework based lateral flow assay for high sensitive detection of tetracycline in food samples[J]. Food Chemistry,2021,339:127854−127854. doi: 10.1016/j.foodchem.2020.127854

    [27]

    BU T, JIA P, SUN X Y, et al. Hierarchical molybdenum disulfide nanosheets based lateral flow immunoassay for highly sensitive detection of tetracycline in food samples[J]. Sensors and Actuators B:Chemical,2020,320:128440. doi: 10.1016/j.snb.2020.128440

    [28]

    ZHANG W, HU S L, YIN J J, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers[J]. Journal of the American Chemical Society,2016,138(18):5860−5865. doi: 10.1021/jacs.5b12070

    [29]

    CAO S L, YUE D M, LI X H, et al. Novel nano-/micro-biocatalyst:soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1, 2-octanediol in deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering,2016,4(6):3586−3595.

    [30]

    LUO L P, HUANG L J, LIU X N, et al. Mixed-valence Ce-BPyDC metal–organic framework with dual enzyme-like activities for colorimetric biosensing[J]. Inorganic Chemistry,2019,58(17):11382−11388. doi: 10.1021/acs.inorgchem.9b00661

    [31]

    ZHONG X, XIA H, HUANG W Q, et al. Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis[J]. Chemical Engineering Journal,2020,381(1):122758.

    [32]

    SHEN Z, XU D Y, WANG G X, et al. Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination[J]. Journal of Hazardous Materials,2022,440:129707. doi: 10.1016/j.jhazmat.2022.129707

    [33]

    CHAI H N, YU K, ZHAO Y M, et al. MOF-on-MOF dual enzyme-mimic nanozyme with enhanced cascade catalysis for colorimetric/chemiluminescent dual-mode aptasensing[J]. Analytical Chemistry,2023,95:10785−10794. doi: 10.1021/acs.analchem.3c01905

    [34]

    YU X X, WEI Y C, QI W, et al. Catalytic metal-organic framework-melamine foam composite as an efficient material for the elimination of organic pollutants[J]. Environmental Science and Pollution Research,2023,30(15):44266−44275. doi: 10.1007/s11356-023-25441-7

    [35]

    FEIZPOOR S, HABIBI YANGJEH A, LUQUE R. Preparation of TiO(2)/Fe-MOF n‒n heterojunction photocatalysts for visible-light degradation of tetracycline hydrochloride[J]. Chemosphere,2023,336:139101. doi: 10.1016/j.chemosphere.2023.139101

    [36]

    MA X J, OU Q, YUAN J J, et al. Multifunctional Fe-doped carbon dots and metal-organic frameworks nanoreactor for cascade degradation and detection of organophosphorus pesticides[J]. Chemical Engineering Journal,2023,464(15):142480.

    [37]

    TIAN Y, LIU Q, LIN S S, et al. Magnetic Z-scheme CuFe2O4/MIL-101(Fe) toward chlorpyrifos degradation:Photocatalytic mechanism, degradation pathways, and intermediates toxicity evaluation[J]. Journal of Environmental Chemical Engineering,2023,11(3):110054. doi: 10.1016/j.jece.2023.110054

    [38]

    LIN B, LI S, PENG Y, et al. MOF-derived core/shell C-TiO(2)/CoTiO(3) type II heterojunction for efficient photocatalytic removal of antibiotics[J]. Journal of Hazardous Materials, 2021, 406:124675.

    [39]

    PAN M, LIAO W M, YIN S Y, et al. Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies[J]. Chemical Reviews,2018,118(18):8889−8935. doi: 10.1021/acs.chemrev.8b00222

    [40]

    MASOOMI M Y, MORSALI A, DHAKSHINAMOORTHY A, et al. Mixed-metal MOFs:Unique opportunities in metal-organic framework (MOF) functionality and design[J]. Angewandte Chemie International Edition,2019,58(43):15188−15205. doi: 10.1002/anie.201902229

    [41]

    CAO W Q, TANG Y, CUI Y J, et al. Energy transfer in metal–organic frameworks and its applications[J]. Small Structures,2020,1(3):2000019. doi: 10.1002/sstr.202000019

    [42]

    XU X H, GUO Y N, WANG X Y, et al. Sensitive detection of pesticides by a highly luminescent metal-organic framework[J]. Sensors and Actuators B:Chemical,2018,260:339−345. doi: 10.1016/j.snb.2018.01.075

    [43]

    FAN M Y, YU H H, FU P, et al. Luminescent Cd(Ⅱ) metal-organic frameworks with anthracene nitrogen-containing organic ligands as novel multifunctional chemosensors for the detection of picric acid, pesticides, and ferric ions[J]. Dyes and Pigments,2020,185:108834.

    [44]

    YUE X Y, FU L, LI Y, et al. Lanthanide bimetallic MOF-based fluorescent sensor for sensitive and visual detection of sulfamerazine and malachite[J]. Food Chemistry,2023,410:135390. doi: 10.1016/j.foodchem.2023.135390

    [45]

    YANG G L, JIANG X L, XU H, et al. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small Structures,2021,17(22):2005327.

    [46] 刘玉莹, 王朝崑, 汪溪远, 等. 荧光传感器阵列检测农药污染物研究进展[J]. 环境化学,2022,41(1):241−250. [LIU Y Y, WANG Z K, WANG X Y, et al. Advances in the detection of pesticide contaminants by fluorescence sensor array[J]. Environmental Chemistry,2022,41(1):241−250.]

    LIU Y Y, WANG Z K, WANG X Y, et al. Advances in the detection of pesticide contaminants by fluorescence sensor array[J]. Environmental Chemistry, 2022, 41(1): 241−250.

    [47]

    HE K Y, LI Z S, WANG L, et al. A water-stable luminescent metal–organic framework for rapid and visible sensing of organophosphorus pesticides[J]. ACS Applied Materials & Interfaces 2019, 11:26250−26260.

    [48]

    YU L, CHEN H X, YUE J, et al. Metal–organic framework enhances aggregation-induced fluorescence of chlortetracycline and the application for detection[J]. Analytical Chemistry,2019,91(9):5913−5921. doi: 10.1021/acs.analchem.9b00319

    [49]

    XU Y, WANG T H, LI H X, et al. Flexible aggregation-induced emission-active hydrogel for on-site monitoring of pesticide degradation[J]. ACS Nano,2022,16(11):18421−18429. doi: 10.1021/acsnano.2c06544

    [50]

    ZHANG Z K, ZHANG L, HAN P, et al. A luminescent probe based on terbium-based metal-organic frameworks for organophosphorus pesticides detection[J]. Mikrochim Acta,2022,189(11):438. doi: 10.1007/s00604-022-05508-x

    [51]

    ZHANG L, SUN Y X, ZHANG Z Y, et al. Portable and durable sensor based on porous MOFs hybrid sponge for fluorescent-visual detection of organophosphorus pesticide[J]. Biosensors and Bioelectronics 2022, 216:114659.

    [52]

    YUE X Y, ZHOU Z J, LI M, et al. Inner-filter effect induced fluorescent sensor based on fusiform Al-MOF nanosheets for sensitive and visual detection of nitrofuran in milk[J]. Food Chemistry,2022,367:130763. doi: 10.1016/j.foodchem.2021.130763

    [53]

    LIU L, CHEN Q, LÜ J, et al. Stable metal–organic frameworks for fluorescent detection of tetracycline antibiotics[J]. Inorganic Chemistry,2022,61(20):8015−8021. doi: 10.1021/acs.inorgchem.2c00754

    [54]

    DUAN N, CHEN X W, LIN X F, et al. Paper-based fluorometric sensing of malachite green using synergistic recognition of aptamer-molecularly imprinted polymers and luminescent metal–organic frameworks[J]. Sensors and Actuators B:Chemical,2023,384:133665. doi: 10.1016/j.snb.2023.133665

    [55]

    GAN Z Y, HU X T, XU X C, et al. A portable test strip based on fluorescent europium-based metal–organic framework for rapid and visual detection of tetracycline in food samples[J]. Food Chemistry,2021,354:129501. doi: 10.1016/j.foodchem.2021.129501

    [56]

    LIU Q J, WANG H, HAN P, et al. Fluorescent aptasensing of chlorpyrifos based on the assembly of cationic conjugated polymer-aggregated gold nanoparticles and luminescent metal-organic frameworks[J]. Analyst,2019,144(20):6025−6032. doi: 10.1039/C9AN00943D

    [57]

    CHEN J, XU F H, ZHANG Q, et al. Tetracycline antibiotics and NH4+ detection by Zn–organic framework fluorescent probe[J]. Analyst,2021,146:6883−6892. doi: 10.1039/D1AN00894C

    [58]

    WANG F X, LI Z P, JIA H P, et al. Bimetallic metal-organic frameworks-based ratiometric fluorescence sensor for the quantitative detection of thiram in fruits samples[J]. Food Chemistry,2023,409:135328. doi: 10.1016/j.foodchem.2022.135328

    [59]

    YU Y, HUANG G L, LUO X L, et al. Carbon dots@Cu metal–organic frameworks hybrids for ratiometric fluorescent determination of pesticide thiophanate-methyl[J]. Microchimica Acta,2022,189:325. doi: 10.1007/s00604-022-05438-8

    [60]

    KHATAEE A, JALILI R, DASTBORHAN M, et al. Ratiometric visual detection of tetracycline residues in milk by framework-enhanced fluorescence of gold and copper nanoclusters[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,242:118715. doi: 10.1016/j.saa.2020.118715

    [61]

    LI Y, WANG Y, DU P Y, et al. Fabrication of carbon dots@hierarchical mesoporous ZIF-8 for simultaneous ratiometric fluorescence detection and removal of tetracycline antibiotics[J]. Sensors and Actuators B:Chemical,2022,358:131526. doi: 10.1016/j.snb.2022.131526

    [62]

    HUO P P, LI Z J, YAO R H, et al. Dual-ligand lanthanide metal–organic framework for ratiometric fluorescence detection of the anthrax biomarker dipicolinic acid[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,282(5):121700.

    [63]

    GUPTA M, KOTTILIL D, TOMAR K, et al. Two-photon absorption and fluorescence in micrometer-sized single crystals of a rhodamine b coordinated metal–organic framework[J]. ACS Applied Energy Materials,2018,1(10):5408−5413.

    [64]

    WANG B J, XU Z Y, SUN Z, et al. A wide-range ratiometric sensor mediating fluorescence and scattering based on carbon dots/metal–organic framework composites for the detection of bisulfite/sulfite in sugar[J]. Analytical and Bioanalytical Chemistry,2023,415:4639−4647. doi: 10.1007/s00216-023-04763-y

    [65]

    STONE A E B S, IRGEN G S, LÓPEZ A R, et al. Encapsulating CdSe/CdS QDs in the MOF ZIF-8 enhances their photoluminescence quantum yields in the solid state[J]. Chemistry of Materials,2022,34(4):1921−1929. doi: 10.1021/acs.chemmater.1c04355

    [66]

    LIU L Z, YAO Z Z, YE Y X, et al. Enhancement of intrinsic proton conductivity and aniline sensitivity by introducing dye molecules into the MOF channel[J]. ACS Applied Materials & Interfaces,2019,11(18):16490−16495.

    [67]

    SHI S C, CAO G J, CHEN Y M, et al. Facile synthesis of core-shell Co-MOF with hierarchical porosity for enhanced electrochemical detection of furaltadone in aquaculture water[J]. Analytica Chimica Acta,2023,1263:341296. doi: 10.1016/j.aca.2023.341296

    [68]

    SHU H, LAI T R, YANG Z C, et al. High sensitivity electrochemical detection of ultra-trace imidacloprid in fruits and vegetables using a Fe-rich FeCoNi-MOF[J]. Food Chemistry,2023,408:135221. doi: 10.1016/j.foodchem.2022.135221

    [69]

    ZHAO Y S, ZUO X, LU X, et al. Hierarchical porous hollow N-doped Cu-based MOF derivatives as highly sensitive electrochemical sensing platform for pesticides detection[J]. Sensors and Actuators B:Chemical,2022,362:131749. doi: 10.1016/j.snb.2022.131749

    [70]

    SONG D D, XU X Y, HUANG X G, et al. Oriented design of transition-metal-oxide hollow multishelled micropolyhedron derived from bimetal-organic frameworks for the electrochemical detection of multipesticide residues[J]. Journal of Agricultural and Food Chemistry,2023,71(5):2600−2609. doi: 10.1021/acs.jafc.2c08818

    [71]

    TU X L, GAO F, MA X J, et al. Mxene/carbon nanohorn/beta-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide[J]. Journal of Hazardous Materials, 2020, 396:122776.

    [72]

    LIANG N N, HU X T, ZHANG X A, et al. Ratiometric sensing for ultratrace tetracycline using electrochemically active metal–organic frameworks as response signals[J]. Journal of Agricultural and Food Chemistry,2023,71(19):7584−7592. doi: 10.1021/acs.jafc.3c00846

    [73]

    HE X, DUO Z, YU W X, et al. Electrochemically reduced graphene oxide/Cu-MOF/Pt nanoparticles composites as a high-performance sensing platform for sensitive detection of tetracycline[J]. Microchimica Acta, 2022, 189(5).

    [74]

    SHU Z X, ZOU Y, WU X Y, et al. NH2-MIL-125(Ti)/reduced graphene oxide enhanced electrochemical detection of fenitrothion in agricultural products[J]. Foods,2023,12(7):1534. doi: 10.3390/foods12071534

    [75]

    ZHANG Y X, LI B, WEI X H, et al. Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework[J]. Microchimica Acta,2021,188(8):286. doi: 10.1007/s00604-021-04912-z

    [76]

    ZHAO Y Z, HAO H Y, WANG H B, et al. Antibiotic quantitative fluorescence chemical sensor based on Zn-MOF aggregation-induced emission characteristics[J]. Microchemical Journal,2023,190:108626. doi: 10.1016/j.microc.2023.108626

    [77]

    HUANG S F, GAN N, ZHANG X Y, et al. Portable fluoride-selective electrode as signal transducer for sensitive and selective detection of trace antibiotics in complex samples[J]. Biosensors and Bioelectronics, 2019, 128:113−121.

    [78]

    REDDICHERLA U, BUMJUN P, SONAM S, et al. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods[J]. Trends in Food Science & Technology,2021,119:69−89.

    [79]

    XU G, CHENG C, YUAN W, et al. Smartphone-based battery-free and flexible electrochemical patch for calcium and chloride ions detections in biofluids[J]. Sensors and Actuators B:Chemical,2019,297(15):126743.

    [80]

    HUSSAIN I, BOWDEN AUDREY K. Smartphone-based optical spectroscopic platforms for biomedical applications:A review[J]. Biomedical Optics Express,2021,12(4):1974−1998. doi: 10.1364/BOE.416753

    [81]

    BANIK S, MELANTHOTA S K, ARBAAZ N, et al. Recent trends in smartphone-based detection for biomedical applications:A review[J]. Analytical and Bioanalytical Chemistry,2021,413:2389−2406. doi: 10.1007/s00216-021-03184-z

    [82]

    LIU X F, SONG J Y, ZHANG X Y, et al. A highly selective and sensitive europium-organic framework sensor for the fluorescence detection of fipronil in tea[J]. Food Chemistry,2023,413:135639. doi: 10.1016/j.foodchem.2023.135639

    [83]

    CAO Y Z, MO F Y, LIU Y H, et al. Portable and sensitive detection of non-glucose target by enzyme-encapsulated metal-organic-framework using personal glucose meter[J]. Biosensors and Bioelectronics 2022, 198:113819.

    [84]

    GAO L P, LI Y, HUANG Z Z, et al. Integrated enzyme with stimuli-responsive coordination polymer for personal glucose meter-based portable immunoassay[J]. Analytica Chimica Acta,2021,1207:339774.

    [85]

    NIE D X, ZHANG Z Q, GUO D K, et al. A flexible assay strategy for non-glucose targets based on sulfhydryl-terminated liposomes combined with personal glucometer[J]. Biosensors and Bioelectronics,2021,175:112884. doi: 10.1016/j.bios.2020.112884

    [86]

    ELISSA K L, MIGUEL A P, BORIS J. Antibody-Invertase fusion protein enabl es quantitative detection of SARS-CoV-2[J]. Journal of the American Chemical Society,2022,144:11226−11237. doi: 10.1021/jacs.2c02537

    [87]

    ZHANG X A, HUANG X Y, WANG Z L, et al. Bioinspired nanozyme enabling glucometer readout for portable monitoring of pesticide under resource-scarce environments[J]. Chemical Engineering Journal,2022,429:132243. doi: 10.1016/j.cej.2021.132243

  • 其他相关附件

图(7)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-10
  • 网络出版日期:  2024-06-17
  • 刊出日期:  2024-08-14

目录

/

返回文章
返回