LI Xiao-yu, ZHANG Qiu-ju. Development of visual detection and sorting technology for granular food[J]. Science and Technology of Food Industry, 2014, (13): 378-381. DOI: 10.13386/j.issn1002-0306.2014.13.074
Citation: LI Xiao-yu, ZHANG Qiu-ju. Development of visual detection and sorting technology for granular food[J]. Science and Technology of Food Industry, 2014, (13): 378-381. DOI: 10.13386/j.issn1002-0306.2014.13.074

Development of visual detection and sorting technology for granular food

More Information
  • Received Date: December 09, 2013
  • Instead of the traditional manual sorting, visual detection technology is widely used in granular food processing to ensure the objectivity and accuracy of detection and identification and substantially increase the production quantity of high-quality granular foods per unit time.This paper introduced granular food quality issues and the modern key technologies of machine vision, reviewed the past decade latest research status of sorting machine vision technology used in the food processing and quality testing of granular sorting, and finally pointed out the existed issues in current research and future developing orientation.
  • loading
  • [1]
    Krishna Kumar Patel.Machine vision system:a tool for quality inspection of food and agricultural products[J].Journal of Food Science and Technology, 2012, 49 (2) :123-141.
    [2]
    凌云.基于机器视觉的谷物外观品质检测技术研究[D].北京:中国农业大学, 2004.
    [3]
    Siriluk Sansomboonsuk, Nitin Afzulpurkar.Machine vision for rice quality evaluation[C].Technology and Innovation for sustainable development conference, 2008:343-346.
    [4]
    Tom Pearson.Hardware-based image processing for highspeed inspection of grains[J].Computers and Electronics in Agriculture, 2009, 69 (1) :12-18.
    [5]
    W Medina, O Skurtys, J M Aguilera.Study on image analysis application for identification Quinoa seeds (Chenopodium quinoa Willd) geographical provenance[J].Food Science and Technology, 2010, 43 (2) :238-246.
    [6]
    刘樱瑛.基于机器视觉的稻米品质评判方法研究[D].南京:南京农业大学, 2010.
    [7]
    Lei Yan, Sang-Ryong Lee, Seung-Han Yang, et al.CCD Rice Grain Positioning Algorithm for Color Sorter with Line CCD Camera[J].The Online Journal on Power and Energy Engineering, 2010, 1 (4) :125-129.
    [8]
    Tom Pearson, Dan Moore, Jim Pearson.A machine vision system for high speed sorting of small spots on grains[J].Food Measure, 2012 (6) :27-34.
    [9]
    李晶晶, 王爱民, 杨红卫.基于形状特征的大米虫蚀粒检测方法[J].农机化研究, 2012 (8) :18-21.
    [10]
    赵敏.基于机器视觉的玉米品质检测[D].长春:吉林大学, 2012.
    [11]
    柴玉华, 高立群, 王蓉, 等.基于多尺度形态学大豆图像滤波方法[J].农业工程学报, 2006, 22 (6) :119-122.
    [12]
    Kivanc Kilic, Ismail Hakki Boyaci, K Hamit.A classification system for beans using computer vision system and artificial neural networks[J].Journal of Food Engineering, 2007, 78:897-904.
    [13]
    时玉强.基于机器视觉的大豆品质的研究[D].哈尔滨:东北农业大学, 2009.
    [14]
    C Igathinathane, L O Pordesimo, W D Batchelor.Major orthogonal dimensions measurement of food grains by machine vision using ImageJ[J].Food Research International, 2009, 42 (1) :76-84.
    [15]
    赵丹婷.基于图像处理技术的大豆外观品质检测系统的研究[D].哈尔滨:东北农业大学, 2010.
    [16]
    王润涛, 张长利, 房俊龙, 等.基于机器视觉的大豆籽粒精选技术[J].农业工程学报, 2011, 27 (8) :355-359.
    [17]
    Diaz R, Gil L, Serrano C, et al.Comparison of three algorithms in the classification of table olives by means of computer vision[J].Journal of Food Engineering, 2004, 61:101-107.
    [18]
    杨峰, 孙涌, 管淼, 等.扁平颗粒体轮廓提取算法研究与应用[J].计算机技术与发展, 2007, 17 (11) :23-25.
    [19]
    李昊宇, 李伟, 徐小波.基于光度立体法的翘板黑瓜子识别方法研究[J].农业工程学报, 2007, 23 (5) :159-163.
    [20]
    陈红.基于计算机视觉的花生仁外观品质无损检测方法的研究[D].武汉:华中农业大学, 2008.
    [21]
    展慧, 李小昱, 王为.虫眼板栗的图像识别方法研究[J].农机化研究, 2010 (8) :121-124.
    [22]
    Kuo-Yi Huang.Detection and classification of areca nuts with machine vision[J].Computers and Mathematics with Applications, 2012, 64:739-746.
    [23]
    赵吉文, 魏正翠, 汪洋, 等.基于灰度带比例的优质西瓜子识别算法研究与实现[J].农业工程学报, 2011, 27 (4) :340-343.

Catalog

    Article Metrics

    Article views (177) PDF downloads (279) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return