Citation: | CHEN Xiaoying, TIAN Guifang, CHEN Zhihui, et al. Research Progress on Modification Technology of Shellfish Protein[J]. Science and Technology of Food Industry, 2022, 43(6): 420−428. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030163. |
[1] |
张晶晶, 郑惠娜, 章超桦, 等. 水产蛋白的提取及其改性研究进展[J]. 安徽农业科学,2014,42(11):3401−3403. [ZHANG Jingjing, ZHENG Huina, ZHANG Chaohua, et al. Research progress of extraction and modification of aquatic protein[J]. Journal of Anhui Agri,2014,42(11):3401−3403. doi: 10.3969/j.issn.0517-6611.2014.11.093
|
[2] |
HARNEDY A P, FITZGERALD J R. Bioactive peptides from marine processing waste and shellfish: A review[J]. Journal of Functional Foods,2012,4(1):6−24. doi: 10.1016/j.jff.2011.09.001
|
[3] |
刘媛, 王健, 孙剑峰, 等. 我国海洋贝类资源的利用现状和发展趋势[J]. 现代食品科技,2013,29(3):673−677. [LIU Yuan, WANG Jian, SUN Jianfeng, et al. Utilization Status of the Resource of Marine Shellfish in China and Preliminary Study on its Development[J]. Modern Food Science and Technology,2013,29(3):673−677.
|
[4] |
张惠婷. 海水养殖贝类加工利用研究进展及展望[J]. 福建轻纺,2021(1):43−45. [ZHANG Huiting. Research progress and Prospect of processing and utilization of mariculture shellfish[J]. Fujian Textile,2021(1):43−45. doi: 10.3969/j.issn.1007-550X.2021.01.010
|
[5] |
曾庆祝, 曾庆孝. 海洋贝类(牡蛎、扇贝、文蛤等)功能性食品的开发利用[J]. 氨基酸和生物资源,2002(3):31−34. [ZENG Qingzhu, ZENG Qingxiao. Development and utilization of functional food of marine shellfish[J]. Amino Acids and Biological Resources,2002(3):31−34.
|
[6] |
刘志芳, 赵前程, 刘志东, 等. 贝类多糖研究进展[J]. 食品与发酵工业,2021,47(9):299−306. [LIU Zhifang, ZHAO Qiancheng, LIU Zhidong, et al. Research progress of polysaccharides derived from shellfish[J]. Food and Fermentation Industries,2021,47(9):299−306.
|
[7] |
章超桦, 秦小明. 贝类加工与利用[M]. 北京: 中国轻工业出版社, 2014: 40−42.
ZHANG Chaohua, QIN Xiaoming. Processing and utilization of shellfish[M]. Beijing: China Light Industry Press, 2014: 40−42.
|
[8] |
何大博, 仝其根. 鸡蛋蛋白质改性研究进展[J]. 农产品加工,2018(3):47−51,54. [HE Dabo, TONG Qigen. Advances in modification methods of egg proteins[J]. Farm Products Processing,2018(3):47−51,54.
|
[9] |
吴曼铃, 时瑞, 胡锦鹏, 等. 提高鱼蛋白溶解性的改性技术研究进展[J]. 食品科技,2020,45(11):138−142. [WU Manling, SHI Rui, HU Jinpeng, et al. Research progress of modifying methods for improving solubility of fish protein[J]. Food Science and Technology,2020,45(11):138−142.
|
[10] |
周丽媛, 唐晓珍, 李宁阳, 等. 物理改性技术在食品加工副产物综合利用中的应用[J]. 中国调味品,2019,44(10):178−181,186. [ZHOU Liyuan, TANG Jiazhen, LI Ningyang, et al. Application of physical modification technology in comprehensive utilization of food processing by-products[J]. China Condiment,2019,44(10):178−181,186. doi: 10.3969/j.issn.1000-9973.2019.10.040
|
[11] |
姜昕, 王锡昌, 潘凤涛, 等. 物理法改善鱼肉蛋白功能特性研究进展[J/OL]. 食品与发酵工业, 2021-02-18: 1−10. https://doi.org/10.13995/j.cnki.11-1802/ts.024853.
JIANG Xin, WANG Xichang, PAN Fengtao, et al. Physical methods of modifying functional properties of fish meat protein[J]. Food and Fermentation Industries: 1−10[2021-02-18]. https://doi.org/10.13995/j.cnki.11-1802/ts.024853.
|
[12] |
LIU Zhongyuan, ZHOU Dayong, LI Ao, et al. Effects of temperature and heating time on the formation of aldehydes during the frying process of clam assessed by an HPLC-MS/MS method[J]. Food Chemistry,2020,308:125650. doi: 10.1016/j.foodchem.2019.125650
|
[13] |
郁浩, 王志耕, 吴洪义, 等. 微波能强度与鸡胸肉中蛋白质变性的关系[J]. 食品工业科技,2012,33(17):131−133,138. [YU Hao, WANG Zhigeng, WU Hongyi, et al. The relationship between microwave energy intensity and protein denaturation of chicken breast[J]. Science and Technology of Food Industry,2012,33(17):131−133,138.
|
[14] |
XIN Dong, JIN Wang, Vijaya Raghavan. Impact of microwave processing on the secondary structure, in-vitro protein digestibility and allergenicity of shrimp (Litopenaeus vannamei) proteins[J]. Food Chemistry,2021,337:127811. doi: 10.1016/j.foodchem.2020.127811
|
[15] |
林玉锋, 黄后培, 刘嘉怡, 等. 不同烹饪方式对牡蛎蛋白质营养品质的影响[J]. 食品科技,2020,45(07):143−151. [LIN Yufeng, HUANG Houpei, LIU Jiayi, et al. Effect of different cooking methods on the nutritional quality of oyster protein[J]. Food Science and Technology,2020,45(07):143−151.
|
[16] |
郭子璇, 陈慧, 王震宇, 等. 热处理对牡蛎蛋白结构及功能特性的影响[J]. 大连工业大学学报,2020,39(4):235−240. [GUO Ziyuan, CHEN Hui, WANG Zhenyu, et al. Effect of heat treatment on structure and function of oyster protein[J]. Journal of Dalian Polytechnic University,2020,39(4):235−240.
|
[17] |
ZHANG Fan, JIANG Suisui, FENG Xue, et al. Effect of heat treatment on physicochemical state and in vitro digestion of salt-soluble protein from Pacific oyster (Crassostrea gigas)[J]. LWT,2020,134:110126. doi: 10.1016/j.lwt.2020.110126
|
[18] |
ZHANG Fan, JIANG Suisui, FENG Xue, et al. Physicochemical state and in vitro digestibility of heat treated water-soluble protein from Pacific oyster (Crassostrea gigas)[J]. Food Bioscience,2020,34(C):100528.
|
[19] |
ZHANG Yifeng, BI Yuge, WANG Qi, et al. Application of high pressure processing to improve digestibility, reduce allergenicity, and avoid protein oxidation in cod (Gadus morhua)[J]. Food Chemistry,2019,298:125087. doi: 10.1016/j.foodchem.2019.125087
|
[20] |
赵伟, 杨瑞金, 张文斌, 等. 超高压处理对牡蛎超微结构、组分及蛋白质变性的影响[J]. 食品与发酵工业,2011,37(5):7−11. [ZHAO Wei, YANG Ruijin, ZHANG Wenbin, et al. Effects of ultra high pressure treatment on ultrastructure, components and protein denaturation of oyster[J]. Food and Fermentation Industries,2011,37(5):7−11.
|
[21] |
吴凡. 物理加工对牡蛎(Ostrea edulis)蛋白结构和功能性质的影响[D]. 大连: 大连工业大学, 2019.
WU Fan. Effects of physical processing on structure and functional properties of oyster protein[D]. Dalian: Dalian Polytechnic University, 2019.
|
[22] |
YU Cuiping, WU Fan, CHA Yue, et al. Structural and functional changes in ultrasonicated oyster protein isolates[J]. International Journal of Food Engineering,2019,15:3−4.
|
[23] |
XU Lili, LIN Hong, LI Zhen Xing, et al. Influence of nonthermal extraction technique and allergenicity characteristics of tropomyosin from fish (Larimichthys crocea) in comparison with shrimp (Litopenaeus vannamei) and clam (Ruditapes philippinarum)[J]. Food Chemistry,2020,309:125575. doi: 10.1016/j.foodchem.2019.125575
|
[24] |
李明月, 杜钰, 姚晓玲, 等. 超高压处理对蛋白质功能特性的影响[J]. 食品科技, 2018, 43(1): 50−54.
LI Mingyue, DU Yu, YAO Xiaoling, et al. Effects of ultrahigh pressure processing on protein functional properties[J]Food Science and Technology, 2018, 43(1): 50−54.
|
[25] |
程凯丽, 胡志和, 赵旭飞, 等. 超高压处理对乳制品中蛋白质和酶的影响研究进展[J]. 乳业科学与技术,2019,42(6):34−40. [CHENG Kaili, HU Zhihe, ZHAO Xufei, et al. A review of the effect of high hydrostatic pressure on proteins and enzymes in dairy products[J]. Journal of Dairy Science and Technology,2019,42(6):34−40.
|
[26] |
周一鸣, 刘倩, 周小理, 等. 超高压对食品蛋白质结构性质影响的研究进展[J]. 食品工业,2018,39(7):285−288. [ZHOU Yiming, LIU Qian, ZHOU Xiaoli, et al. A review on effect of ultrahigh pressure on structure and properties of food protein[J]. The Food Industry,2018,39(7):285−288.
|
[27] |
李正龙. 超高压技术对鳗鱼原肌球蛋白结构与功能及鱼丸品质的影响研究[D]. 厦门: 厦门大学, 2019.
LI Zhenglong. Studies on the structure and function of tropomyosin and eel balls quality treated with ultrahigh pressure technoloy[D]. Xiamen: Xiamen University, 2019
|
[28] |
李雨枫, 薛思雯, 衣晓坤, 等. 高压均质处理对不同浓度肌原纤维蛋白水悬液理化特性及蛋白结构的影响[J]. 食品工业科技,2019,40(21):1−6,12. [LI Yufeng, XUE Siwen, YI Xiaokun, et al. Effects of high pressure homogenization on physicochemical properties and protein structure of myofibrillar protein aqueous suspensions with different concentrations[J]. Science and Technology of Food Industry,2019,40(21):1−6,12.
|
[29] |
WU Di, WU Chao, WANG Zhenyu, et al. Effects of high pressure homogenize treatment on the physicochemical and emulsifying properties of proteins from scallop (Chlamys farreri)[J]. Food Hydrocolloids,2019,94:537−545. doi: 10.1016/j.foodhyd.2019.04.003
|
[30] |
WANG Yahui, JIANG Suisui, ZHAO Yuanhui, et al. Physicochemical and rheological changes of oyster (Crassostrea gigas) protein affected by high-pressure homogenization[J]. LWT,2020,134:110143. doi: 10.1016/j.lwt.2020.110143
|
[31] |
查越. 物理加工对紫贻贝(Mytilus edulis)蛋白结构和功能性质的影响[D]. 大连: 大连工业大学, 2019.
CHA Yue. Effects of physical processing on the structure and functional properties of mussel (Mytilus edulis) protein[D]. Dalian: Dalian Polytechnic University, 2019.
|
[32] |
加娜尔古丽. 阿热恩哈孜, 张建鹏, 宫元娟. 超微粉碎技术在农产品加工中的应用及研究进展[J]. 农业科技与装备,2013(7):58−59,62. [JIA Na’erguli·A Reehazi, ZHANG Jianpeng, GONG Yuanjuan. Application and headway of ultra-fine pulverization in farm products processing[J]. Agricultural Science & Technology and Equipment,2013(7):58−59,62. doi: 10.3969/j.issn.1674-1161.2013.07.024
|
[33] |
SUN Chanchan, LIU Rui, NI Kai, et al. Reduction of particle size based on superfine grinding: Effects on structure, rheological and gelling properties of whey protein concentrate[J]. Journal of Food Engineering,2016,186:69−76. doi: 10.1016/j.jfoodeng.2016.03.002
|
[34] |
ZHAO Xiaoyan, SUN Lu, ZHANG Xiaowei, et al. Effects of ultrafine grinding time on the functional and flavor properties of soybean protein isolate[J]. Colloids and Surfaces B: Biointerfaces,2020,196:111345. doi: 10.1016/j.colsurfb.2020.111345
|
[35] |
杨春瑜, 柳双双, 梁佳钰, 等. 超微粉碎对食品理化性质影响的研究[J]. 食品研究与开发,2019,40(1):220−224. [YANG Chunyu, LIU Shuangshuang, LIANG Jiayu, et al. Effects of superfine grinding technology on physical and chemical propertie of food[J]. Food Research and Development,2019,40(1):220−224. doi: 10.3969/j.issn.1005-6521.2019.01.036
|
[36] |
高帅. 超微粉碎技术在食品工业中的应用和发展前景[J]. 广州化工,2014,42(11):35−37. [GAO Shuai. Application of superfine grinding technology in food industry and its prospect[J]. Guangzhou Chemical Industry,2014,42(11):35−37. doi: 10.3969/j.issn.1001-9677.2014.11.013
|
[37] |
谢亚如, 刘庆, 熊善柏, 等. 高强度超声作用下鲢鱼肌球蛋白的结构及流变学特性变化[J]. 食品科学,2019,40(5):77−84. [XIE Yaru, LIU Qing, XIONG Shanbai. Effect of high intensity ultrasound on structural and rheological properties of myosin from silver carp[J]. Food Science,2019,40(5):77−84. doi: 10.7506/spkx1002-6630-20180205-064
|
[38] |
孙英杰. 超声波处理对大豆分离蛋白结构和功能性质影响研究[D]. 哈尔滨: 东北农业大学, 2014.
SUN Yingjie. Study on the effect of ultrasonic treatments on structure and functional properties of SPI[D]. Harbin: Northeast Agricultural University, 2014
|
[39] |
皮桂泉, 胡义泽, 乔佳琦, 等. 超声处理对蛋白结构和特性的影响[J]. 粮食与食品工业,2020,27(5):36−37. [PI Guiquan, HU Yize, QIAO Jiaqi, et al. Effect of ultrasonic treatment on protein structure and properties[J]. Cereal & Food Industry,2020,27(5):36−37. doi: 10.3969/j.issn.1672-5026.2020.05.010
|
[40] |
LI Yufeng, ZENG Qiaohui, LIU Guang, et al. Effects of ultrasound-assisted basic electrolyzed water (BEW) extraction on structural and functional properties of Antarctic krill (Euphausia superba) proteins[J]. Ultrasonics Sonochemistry,2021,71:105364. doi: 10.1016/j.ultsonch.2020.105364
|
[41] |
XIN Dong, JIN Wang, Vijaya Raghavan. Effects of high-intensity ultrasound processing on the physiochemical and allergenic properties of shrimp[J]. Innovative Food Science and Emerging Technologies,2020,65:102441. doi: 10.1016/j.ifset.2020.102441
|
[42] |
LI Haijing, HU Yifan, ZHAO Xinhuai, et al. Effects of different ultrasound powers on the structure and stability of protein from sea cucumber gonad[J]. LWT,2021,137:110403. doi: 10.1016/j.lwt.2020.110403
|
[43] |
李可, 李三影, 扶磊, 等. 低频高强度超声波对鸡胸肉肌原纤维蛋白性质的影响[J]. 食品科学,2020,41(23):122−129. [LI Ke, LI Sanying, FU Lei, et al. Effect of low-frequency and high-intensity ultrasound treatment on characteristics of chicken breast myofibrillar protein[J]. Food Science,2020,41(23):122−129. doi: 10.7506/spkx1002-6630-20191205-067
|
[44] |
XUE Siwen, XU Xinglian, SHAN Huimin. Effects of high-intensity ultrasound, high-pressure processing, and high-pressure homogenization on the physicochemical and functional properties of myofibrillar proteins[J]. Innovative Food Science and Emerging Technologies,2018,45:345−360.
|
[45] |
Carlos Álvarez, Pauline Lélu, Sarah A. Lynch, et al. Tiwari. Optimised protein recovery from mackerel whole fish by using sequential acid/alkaline isoelectric solubilization precipitation (ISP) extraction assisted by ultrasound[J]. LWT,2018,88:210−216. doi: 10.1016/j.lwt.2017.09.045
|
[46] |
TANG Ling, Jirawat Yongsawatdigul. Physicochemical properties of tilapia (Oreochromis niloticus) actomyosin subjected to high intensity ultrasound in low NaCl concentrations[J]. Ultrasonics Sonochemistry,2020,63:104922. doi: 10.1016/j.ultsonch.2019.104922
|
[47] |
ALEJANDRO Martínez-Velasco, CONSUELO Lobato-Calleros, BLANCA E Hernández-Rodríguez, et al. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes[J]. Ultrasonics-Sonochemistry,2018,44:97−105. doi: 10.1016/j.ultsonch.2018.02.007
|
[48] |
ZHANG Ziye, ZHANG Xiaofeng, CHEN Wei, et al. Conformation stability, in vitro digestibility and allergenicity of tropomyosin from shrimp (Exopalaemon modestus) as affected by high intensity ultrasound[J]. Food Chemistry,2018,245:997−1009. doi: 10.1016/j.foodchem.2017.11.072
|
[49] |
高加龙, 沈建, 章超桦, 等. 美拉德反应对牡蛎酶解产物风味物质的影响[J]. 食品科技,2015(6):169−174. [GAO Jialong, SHEN Jian, ZHANG Chaohua, et al. Effect of Mailard reaction on flavour substance of oyster hydrolysates[J]. Food Science and Technology,2015(6):169−174.
|
[50] |
TIAN Yang, LIU Chenglong, ZHANG Ke, et al. Glycosylation between recombinant peanut protein Ara h 1 and glucosamine could decrease the allergenicity due to the protein aggregation[J]. LWT,2020,127:109374. doi: 10.1016/j.lwt.2020.109374
|
[51] |
陈欣, 黄和, 李中权. 糖基化反应改善水产蛋白功能特性的研究进展[J]. 中国食物与营养,2010(4):35−38. [CHEN Xin, HUANG He, LI Zhongquan. Research progress of glycosylation to improve functional properties of aquatic protein[J]. Food and Nutrition in China,2010(4):35−38. doi: 10.3969/j.issn.1006-9577.2010.04.010
|
[52] |
刘建华, 丁玉庭. 糖基化反应改善鱼肉肌原纤维蛋白功能特性及其机制研究进展[J]. 食品与发酵工业,2012,38(8):132−136. [LI Jianghua, DING Yuting. Functional properties improvement and its mechanisms of fish myofibrillar proteins by glycation: A review[J]. Food and Fermentation Industries,2012,38(8):132−136.
|
[53] |
姜梦云, 刘俊荣, 周晏琳, 等. 栉孔扇贝(Chlamys farreri)闭壳肌分离蛋白的糖基化特性[J]. 食品与发酵工业,2017,43(9):71−77. [JANG Mengyun, LIU Junrong, ZHOU Yanlin, et al. The characterization of glycosylation of protein isolated from Chlamys farreri adductor muscle[J]. Food and Fermentation Industries,2017,43(9):71−77.
|
[54] |
牛改改, 游刚, 李京丽. 还原糖对牡蛎蛋白肽糖基化反应产物功能特性与抗氧化性的影响[J]. 食品工业科技,2018,39(8):44−49. [NIU Gaigai, YOU Gang, LI Lijing. Effects of reducing sugars on functional properties and antioxidant activities of glycosylation modification products of oyster protein hydrolysates[J]. Science and Technology of Food Industry,2018,39(8):44−49.
|
[55] |
BANACH J C, LIN Z, LAMSAL B P. Enzymatic modification of milk protein concentrate and characterization of resulting functional properties[J]. LWT - Food Science and Technology,2013,54(2):397−403. doi: 10.1016/j.lwt.2013.06.023
|
[56] |
刘云姣, 张海燕, 刘淑晗, 等. 响应面优化南极磷虾蛋白酶解工艺及蛋白肽组分分析[J]. 现代食品科技,2019,35(1):144−151,280. [LIU Yunjiao, ZHANG Haiyan, LIU Shuhan, et al. Response surface optimization of proteolytic process and protein peptide composition analysis of antarctic krill[J]. Modern Food Science and Technology,2019,35(1):144−151,280.
|
[57] |
吴园涛, 孙恢礼. 海洋贝类蛋白资源酶解利用[J]. 中国生物工程杂志,2007(9):120−125. [WU Yuantao, SUN Huili. Research progress in utilizing marine shellfish proteins by enzymatic hydrolysis[J]. China Biotechnology,2007(9):120−125.
|
[58] |
李莹, 黄开红, 周剑忠, 等. 水产蛋白酶解制备鲜味肽[J]. 食品科学,2012,33(13):248−253. [LI Ying, HUANG Kaihong, ZHOU Jianzhong, et al. Preparation of umami peptides by enzymatic hydrolysis of proteins from aquatic products[J]. Food Science,2012,33(13):248−253.
|
[59] |
骆静. 牡蛎蛋白小分子肽制备关键技术研究[D]. 舟山: 浙江海洋大学, 2019.
LUO Jing. Study on the key technology of preparation of oyster protein small molecular peptide[D]. Zhoushan: Zhejiang Ocean University, 2019
|
[60] |
张欣彩. 牡蛎酶解口服液加工工艺研究[D]. 保定: 河北农业大学, 2014.
ZHANG Xincai. Study on the processed technology of oyster enzymolysis oral liquid[D]. Baoding: Hebei Agricultural University, 2014.
|
[61] |
高雅鑫, 杨森, 李雨恬, 等. Box-Behnken法优化双酶协同水解牡蛎蛋白工艺[J]. 食品工业科技,2018,39(10):117−121,127. [GAO Yaxin, YANG Sen, LI Yutian, et al. Employing box-behnken to optimize the preparation of enzymatic hydrolysate of oyster[J]. Science and Technology of Food Industry,2018,39(10):117−121,127.
|
[62] |
杨森, 高雅鑫, 王琴, 等. 牡蛎牛磺酸抗氧化功能评价及产品加工关键技术[J]. 食品安全导刊,2017(12):128−130. [YANG Sen, GAO Yaxin, WANG Qin, et al. Evaluation of antioxidant function of oyster taurine and key technology of product processing[J]. China Food Safety Magazine,2017(12):128−130.
|
[63] |
柏昌旺. 可控酶解制备牡蛎短肽工艺及其产品开发[D]. 湛江: 广东海洋大学, 2019.
BAI Changwang. Study on the process of controlled enzymatic hydrolysis of oyster oligopeptides and its product development[D]. Zhanjiang: Guangdong Ocean University, 2019
|
[64] |
李姣, 杨键, 戴世鲲, 等. 扇贝蛋白酶解物中的新型抗氧化肽研究[J]. 中南药学,2018,16(5):633−636. [LI Jiao, YANG Jian, DAI Shikun, et al. Novel antioxidant peptides from scallops hydrolytic protein[J]. Central South Pharmacy,2018,16(5):633−636.
|
[65] |
庞忠莉, 郑建仙. 双酶法制备牡蛎干酶解液及其体外抗氧化活性评价[J]. 食品与机械,2020,36(4):151−156. [PANG Zhongli, ZHENG Jianxian. Preparation of dried oyster hydrolysate by Bi-enzymatic method and evaluation of antioxidant activity in vitro[J]. Food & Machinery,2020,36(4):151−156.
|
[66] |
张泽, 赵前程, 程继龙, 等. 长牡蛎蛋白双酶水解工艺及其产物的抗氧化活性[J]. 湖北农业科学,2012,51(11):2315−2317. [ZHANG Ze, ZHAO Qiancheng, CHENG Jilong, et al. Study on bienzymatic hydrolysis of crasostrea gigas protein and the antioxidant activities of hydrolysate[J]. Hubei Agricultural Sciences,2012,51(11):2315−2317. doi: 10.3969/j.issn.0439-8114.2012.11.045
|