WEN Yuxi, HUANG Xiaozhou, LIN Xiaosi. Analysis of Chemical Composition and Antioxidant Activities of Water-insoluble and Water-soluble Polysaccharides from Euglena gracilis[J]. Science and Technology of Food Industry, 2022, 43(5): 105−113. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060256.
Citation: WEN Yuxi, HUANG Xiaozhou, LIN Xiaosi. Analysis of Chemical Composition and Antioxidant Activities of Water-insoluble and Water-soluble Polysaccharides from Euglena gracilis[J]. Science and Technology of Food Industry, 2022, 43(5): 105−113. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060256.

Analysis of Chemical Composition and Antioxidant Activities of Water-insoluble and Water-soluble Polysaccharides from Euglena gracilis

More Information
  • Received Date: June 28, 2021
  • Accepted Date: December 23, 2021
  • Available Online: January 03, 2022
  • Objective: The antioxidant activities and main structural characteristics of water-insoluble and water-soluble polysaccharides of Euglena gracilis were comparatively studied, which provided an experimental basis for the subsequent research of the structure-activity relationship of E. gracilis polysaccharides. Methods: The water-insoluble and water-soluble polysaccharides were extracted, separated and purified from E. gracilis. The basic structure of the polysaccharides was analyzed by UV, IR, HPGPC and IC techniques. The antioxidant activities of these polysaccharides were further investigated by measuring scavenging activities against 1,1-Diphenyl-2-picrylhydrazyl free radical (DPPH·) and hydroxyl radical (·OH), and reducing ability, compared with vitamin C (VC). Results: The molecular weights of E. gracilis water-insoluble polysaccharides (EGP-1) and E. gracilis water-soluble polysaccharides (EGP-2A-1 and EGP-2B-1) were 1.01×104, 2.91×106 and 1.70×106 Da, respectively. EGP-1 was a glucopyranose cyclic polysaccharide connected by β-glycosidic bonds, and EGP-2A-1 and EGP-2B-1 were glucopyranose cyclic polysaccharides containing α- and β-glycosidic bonds. The main monosaccharides found in EGP-1 were glucose, mannose, fucose and rhamnose; EGP-2A-1 and EGP-2B-1 were composed of fucose, rhamnose, arabinose, glucosamine, hydrochloride galactose, glucose, xylose, mannose and glucuronic acid. The results of antioxidant activities showed that three-component polysaccharides had antioxidant activity, the order of their antioxidant capacities was VC>EGP-2A-1>EGP-2B-1>EGP-1. Conclusions: Both the water-insoluble and water-soluble polysaccharides isolated from E. gracilis had antioxidant capacity, and the antioxidant activity of water-soluble polysaccharides was stronger than that of water-insoluble polysaccharides, and the EGP-2A-1 was the best.
  • loading
  • [1]
    陈建琴, 钱晶. pH值与绿眼虫包囊的形成[J]. 生物学通报,2005,40(6):38. [CHEN J Q, QIAN J. pH and the formation of green Euglena cysts[J]. Bulletin of Biology,2005,40(6):38. doi: 10.3969/j.issn.0006-3193.2005.06.030
    [2]
    PRICE C A. The biology of Euglena. Volume 3: Physiology. Dennis E. Buetow[J]. The Quarterly Review of Biology,1983,58(2):256−256.
    [3]
    关于批准裸藻等8种新食品原料的公告(2013年第10号) [EB/OL]. http://www.nhfpc.gov.cn/sps/s7890/201311/533ed8492dd04ff3aa63c7edd40c256.shtml

    Announcement on approving 8 new food ingredients including Euglena (2013 No. 10) [M]. http://www.nhfpc.gov.cn/sps/s7890/201311/533ed8492dd04ff3aa63c7edd40c256.shtml
    [4]
    中岛绫香, 铃木健吾, 伊势川裕二. 抗病毒剂及抗病毒用食品: 中国, CN201680082968.0[P]. 2018-10-23.

    AYAKA N, KENGO S, YUJI I. Antiviral agents and antiviral foods: China, CN201680082968.0[P]. 2018-10-23.
    [5]
    王崇队, 张明, 杨立风, 等. 不同来源膳食纤维品质分析及抗氧化活性研究[J]. 食品科技,2019,44(5):78−83. [WANG C D, ZHANG M, YANG L F, et al. Quality analysis and antioxidant activity of dietary fiber from different sources[J]. Food Technology,2019,44(5):78−83.
    [6]
    XU S Y, HUANG X, KIT-LEONG C. Recent advances in marine algae polysaccharides: isolation, structure, and activities[J]. Marine Drugs,2017,15(12):388. doi: 10.3390/md15120388
    [7]
    WEN Y, GAO L, ZHOU H, et al. Opportunities and challenges of algal fucoidan for diabetes management[J]. Trends in Food Science & Technology,2021,111:628−641.
    [8]
    YAMAMOTO F Y, YIN F, ROSSI W, et al. β-1, 3 glucan derived from Euglena gracilis and algamune enhances innate immune responses of red drum (Sciaenops ocellatus L. )[J]. Fish Shellfish Immunol,2018,77:273−279. doi: 10.1016/j.fsi.2018.04.003
    [9]
    THANKAMONY R L. Euglena as a potential natural source of value-added metabolites. A review[J]. Algal Research,2019,37:154−159. doi: 10.1016/j.algal.2018.11.024
    [10]
    PHILLIPS F C, JENSEN G S, SHOWMAN L, et al. Particulate and solubilized β-glucan and non-β-glucan fractions of Euglena gracilis induce pro-and anti-inflammatory innate immune cell responses and exhibit antioxidant properties[J]. Journal of Pharmacy Research,2019,12:49−64.
    [11]
    鞠海军. 裸藻多糖分离提取、结构鉴定及生物活性研究[D]. 上海: 华东理工大学, 2020.

    JU H J. Separation, structure identification of paramylon and study on its bioactives[D]. Shanghai: East China University of Science and Technology, 2020.
    [12]
    葛智超, 李燕, 施文正, 等. 裸藻多糖提取工艺优化及抗氧化活性研究[J]. 食品与机械,2020,36(1):186−191. [GE Z C, LI Y, SHI W Z, et al. Optimization of the extraction process of polysaccharides from Euglena and its antioxidant activity[J]. Food and Machinery,2020,36(1):186−191.
    [13]
    LIU X, LIU D, CHEN Y, et al. Physicochemical characterization of a polysaccharide from Agrocybe aegirita and its anti-ageing activity[J]. Carbohydrate Polymers,2020,236(1-2):116056.
    [14]
    马佩佩, 王洪新, 童军茂. 库尔勒香梨多糖的分离纯化及抗氧化性质的研究[J]. 食品研究与开发,2010(6):53−55. [MA P P, WANG H X, TONG J M. Separation, purification and antioxidative activites of polysaccharides from Pyrus bretschneideri Rehd[J]. Food Research and Development,2010(6):53−55. doi: 10.3969/j.issn.1005-6521.2010.06.016
    [15]
    SUN Y, HUO J, ZHONG S, et al. Chemical structure and anti-inflammatory activity of a branched polysaccharide isolated from Phellinus baumii[J]. Carbohydrate Polymers,2021,268:118214. doi: 10.1016/j.carbpol.2021.118214
    [16]
    XIU L, SHENG S, HU Z, et al. Exopolysaccharides from Lactobacillus kiferi as adjuvant enhanced the immuno-protective against Staphylococcus aureus infection[J]. International Journal of Biological Macromolecules,2020,161:10−23. doi: 10.1016/j.ijbiomac.2020.06.005
    [17]
    栗晓庆, 吕俊平, 刘琪, 等. 裸藻多糖碱提工艺优化及其体外抗氧化活性研究[J]. 食品科技,2019,44(9):209−215. [LI X Q, LV J P, LIU Q, et al. Optimization of alkaline extraction and antioxidant activities of paramylon in vitro[J]. Food Science and Technology,2019,44(9):209−215.
    [18]
    宋佳敏, 王鸿飞, 孙朦, 等. 响应面法优化金蝉花多糖提取工艺及抗氧化活性分析[J]. 食品科学,2018,39(4):275−281. [SONG J M, WANG H F, SUN M, et al. Optimization of extraction and antioxidant activity of polysaccharides from Cordyceps cicadae by response surface methodology[J]. Food Science,2018,39(4):275−281. doi: 10.7506/spkx1002-6630-201804041
    [19]
    董扬, 郝利民, 刘宇琪, 等. 不同破壁方法对灵芝孢子粗多糖抗氧化活性的影响[J]. 食品科学,2017,38(17):101−106. [DONG Y, HAO L M, LIU Y Q, et al. Effect of different cell wall disruption methods on in vitro antioxidant activity of crude polysaccharides Ganoderma lucidum spores[J]. Food Science,2017,38(17):101−106. doi: 10.7506/spkx1002-6630-201717017
    [20]
    NIE S, XIE M, FU Z, et al. Study on the purification and chemical compositions of tea glycoprotein[J]. Carbohydrate Polymers,2008,71(4):626−633. doi: 10.1016/j.carbpol.2007.07.005
    [21]
    JIAN H, QIAO F, CHEN J, et al. Physicochemical characterisation of polysaccharides from the seeds and leaves of miracle fruit (Synsepalum dulcificum) and their antioxidant α-glucosidase inhibitory activities in vitro[J]. Journal of Chemistry,2017,9:8948639.
    [22]
    YANG D, LIN F, HUANG Y, et al. Separation, purification, structural analysis and immune-enhancing activity of sulfated polysaccharide isolated from sea cucumber viscera[J]. International Journal of Biological Macromolecules,2020,155(155):1003−1018.
    [23]
    WANG W, MA X, JIANG P, et al. Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions[J]. Food Hydrocolloids,2016,61(61):730−739.
    [24]
    HE P, ZHANG A, ZHANG F, et al. Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus sclerotia[J]. Carbohydrate Polymers,2016,152:222−230. doi: 10.1016/j.carbpol.2016.07.010
    [25]
    WU D, CHEN Y, WAN X, et al. Structural characterization and hypoglycemic effect of green alga Ulva lactuca oligosaccharide by regulating microRNAs in Caenorhabditis elegans[J]. Algal Research,2020,51:102083. doi: 10.1016/j.algal.2020.102083
    [26]
    DING X, FENG S, CAO M, et al. Structure characterization of polysaccharide isolated from the fruiting bodies of Tricholoma matsutake[J]. Carbohydrate Polymers,2010,81(4):942−947. doi: 10.1016/j.carbpol.2010.04.010
    [27]
    WANG Y, LIU Y, YU H, et al. Structural characterization and immuno-enhancing activity of a highly branched water-soluble β-glucan from the spores of Ganoderma lucidum[J]. Carbohydrate Polymers,2017,167(167):337−344.
    [28]
    FENG S, LUAN D, NING K, et al. Ultrafiltration isolation, hypoglycemic activity analysis and structural characterization of polysaccharides from Brasenia schreberi[J]. International Journal of Biological Macromolecules,2019,135:141−151. doi: 10.1016/j.ijbiomac.2019.05.129
    [29]
    YANG L, ZHANG L. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources[J]. Carbohydrate Polymers,2009,40(33):349−361.
    [30]
    朱赓伯. 自由基与人体健康[J]. 家庭医学月刊,2005(23):34. [ZHU G B. Free radicals and human health[J]. Family Medicine Monthly,2005(23):34.
    [31]
    HUI S, LU J, ZHOU W. Structure characterization and antioxidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand[J]. Carbohydrate Polymers,2019,212:178−185. doi: 10.1016/j.carbpol.2019.02.040
    [32]
    DARAMOLA B, ADEGOKE G. Bitter kola (Garcinia kola) seeds and health management potential[J]. Nuts and seeds in health and disease prevention,2011:213−220.
    [33]
    MISHRA R, BISHT S S. Antioxidants and their charecterization[J]. Journal of Pharmacy Research,2011,4(8):2744−2746.
    [34]
    李兴太, 纪莹. 线粒体氧化应激与天然抗氧化剂研究进展[J]. 食品科学,2015,36(7):268−277. [LI X T, JI Y. Recent advances in mitochondrial oxidative stress and natural antioxidants[J]. Food Science,2015,36(7):268−277. doi: 10.7506/spkx1002-6630-201507049
    [35]
    薛山. 紫薯不溶性膳食纤维超声辅助酶法提取工艺及抗氧化活性研究[J]. 食品与机械,2018,34(5):153−157,163. [XUE S. Extraction of insoluble dietary fiber from purple sweet potato by ultrasonic assisted enzyme method and the determination of its hydrroxyl radical scavenging ability[J]. Food and Machinery,2018,34(5):153−157,163.
    [36]
    刘洪超. 羊栖菜多糖的提取分离、生物活性及结构鉴定[D]. 上海: 上海海洋大学, 2017.

    LIU H C. Study isolation, purification and determination of physiological activity on SFPS (Sargassum fusiforme)[D]. Shanghai: Shanghai Ocean University, 2017.
    [37]
    朱娇娇, 周安婕, 丁怡, 等. 3种天然植物多糖的抗氧化与降血糖活性研究[J]. 粮食与油脂,2018,31(8):96−100. [ZHU J J, ZHOU A J, DING Y, et al. Antioxidant and hypoglycemic activities of three natural plant polysaccharides[J]. Cereals & Oils,2018,31(8):96−100. doi: 10.3969/j.issn.1008-9578.2018.08.025
    [38]
    艾于杰. 抗氧化活性茶多糖构效关系研究[D]. 武汉: 华中农业大学, 2019.

    AI Y J. Study on the structure-activity relationship of antioxidant tea polysaccharides[D]. Wuhan: Huazhong Agricultural University, 2019.
    [39]
    WANG D, BEI F, YAN W, et al. Optimum extraction, characterization, and antioxidant activities of polysaccharides from flowers of Dendrobium devonianum[J]. International Journal of Analytical Chemistry,2018,2018:1−8.
    [40]
    LUO Q L, TANG Z H, ZHANG X F, et al. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale[J]. International Journal of Biological Macromolecules,2016,89:219−227. doi: 10.1016/j.ijbiomac.2016.04.067
    [41]
    黄依佳, 吴剑荣, 朱莉, 等. 蓝藻多糖的分离、结构表征及抗氧化活性研究[J]. 食品与机械,2018,34(2):176−180. [HUANG Y J, WU J R, ZHU L, et al. Study on isolation, structure characterization and radical scavenging activity of Cyanobacteria polysaccharide[J]. Food and Machinery,2018,34(2):176−180.
    [42]
    刘袆帆, 郭烁璇, 林映妤, 等. 石斛多糖的构效关系研究进展[J]. 现代食品科技,2021,37(1):308−338. [LIU Y F, GUO S X, LIN Y Y, et al. The relationship between the structure and function of Dendrobium polysaccharides: A review[J]. Modern Food Science and Technology,2021,37(1):308−338.

Catalog

    Article Metrics

    Article views (577) PDF downloads (50) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return