Citation: | CHENG Xinfeng, PAN Ling, LI Ning, et al. Moisture Diffusivity Characteristics and Model Fitting of Jerusalem Artichoke(Helianthus tuberosus L.) during Microwave Vacuum Drying[J]. Science and Technology of Food Industry, 2022, 43(6): 33−40. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070048. |
[1] |
KHUENPET K, JITTANIT W, SIRISANSANEEYAKUL S, et al. Inulin powder production from Jerusalem artichoke (Helianthus tuberosus L.) tuber powder and its application to commercial food products[J]. Journal of Food Processing and Preservation,2017,41(4):e13097. doi: 10.1111/jfpp.13097
|
[2] |
CHENG X F, ADHIKARI B, XIE A G, et al. Moisture sorption behaviour and thermodynamic properties of adsorbed water of Jerusalem artichoke (Helianthus tuberosus L.) powder[J]. International Food Research Journal,2020,27(3):505−515.
|
[3] |
RADOVANOVIC A, STOJCESKA V, PLUNKETT A, et al. The use of dry Jerusalem artichoke as a functional nutrient in developing extruded food with low glycaemic index[J]. Food Chemistry,2015,177:81−88. doi: 10.1016/j.foodchem.2014.12.096
|
[4] |
TAMAS A, MOHAMED T, TAREK-TILISTYAK J, et al. Comparative effects of three different drying methods on drying kinetics and quality of Jerusalem artichoke (Helianthus tuberosus L.)[J]. Journal of Food Processing and Preservation,2017,43(3):e12971.
|
[5] |
DOYMAZ I. Effect of pre-treatment and air temperature on drying kinetics and quality of Jerusalem artichoke[J]. Studii şi Cercetări Stiinţifice CICBIA,2018,19(4):395−409.
|
[6] |
曾目成, 毕金峰, 陈芹芹, 等. 基于Weibull分布函数猕猴桃切片微波真空干燥过程模拟及应用[J]. 中国食品学报,2015,15(6):129−135. [ZENG M C, BI J F, CHEN Q Q, et al. Weibull distribution for modeling microwave vacuum drying of kiwifruit slices and its application[J]. Journal of Chinese Institute of Food Science and Technology,2015,15(6):129−135.
|
[7] |
DONG W, CHENG K, HU R, et al. Effect of microwave vacuum drying on the drying characteristics, color, microstructure, and antioxidant activity of green coffee beans[J]. Molecules,2018,23(5):1146−1161. doi: 10.3390/molecules23051146
|
[8] |
JIANG N, LIU C Q, LI D, et al. Effect of thermosonic pretreatment on drying kinetics and energy consumption of microwave vacuum dried Agaricus bisporus slices[J]. Journal of Food Engineering,2016,177:21−30. doi: 10.1016/j.jfoodeng.2015.12.012
|
[9] |
BAI-NGEW S, THERDTHAI N, DHAMVITHEE P. Characterization of microwave vacuum-dried durian chips[J]. Journal of Food Engineering,2011,104:114−122. doi: 10.1016/j.jfoodeng.2010.12.003
|
[10] |
代建武, 杨升霖, 王杰, 等. 微波真空干燥对香蕉片干燥特性及品质的影响[J]. 农业机械学报,2020,51(S1):493−500. [DAI J W, YANG S L, WANG J, et al. Effect of microwave vacuum drying conditions on drying characteristics and texture sructure of banana chips[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(S1):493−500. doi: 10.6041/j.issn.1000-1298.2020.S1.058
|
[11] |
LAGNIKA C, JIANG N, SONG J, et al. Effects of pretreatments on properties of microwave-vacuum drying of sweet potato slices[J]. Drying Technology,2019,37(15):1901−1914. doi: 10.1080/07373937.2018.1543702
|
[12] |
薛广, 李敏, 关志强. 基于Weibull函数的超声渗透罗非鱼片真空微波干燥模拟[J]. 食品与发酵工业,2020,46(1):157−165. [XUE G, LI M, GUAN Z Q. Simulation of vacuum microwave drying of tilapia fillets by ultrasonic penetration based on Weibull function[J]. Food and Fermentation Industries,2020,46(1):157−165.
|
[13] |
TAYYAB RASHID M, AHMED JATOI M, SAFDAR B, et al. Modeling the drying of ultrasound and glucose pretreated sweet potatoes: The impact on phytochemical and functional groups[J]. Ultrasonics Sonochemistry,2020,68:105226. doi: 10.1016/j.ultsonch.2020.105226
|
[14] |
ZHAO Y T, WANG W W, ZHENG B D, et al. Mathematical modeling and influence of ultrasonic pretreatment on microwave vacuum drying kinetics of lotus (Nelumbo nucifera Gaertn.) seeds[J]. Drying Technology,2016,35(5):553−563.
|
[15] |
张卫鹏, 肖红伟, 高振江, 等. 中短波红外联合气体射流干燥提高茯苓品质[J]. 农业工程学报,2015,31(10):269−276. [ZHANG W P, XIAO H W, GAO Z J, et al. Improving quality of Poria cocos using infrared radiation combined with air impingement drying[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(10):269−276. doi: 10.11975/j.issn.1002-6819.2015.10.036
|
[16] |
巨浩羽, 赵海燕, 张菊, 等. 基于Dincer模型不同干燥方式下光皮木瓜干燥特性研究[J]. 中草药,2020,51(15):3911−3921. [JU H Y, ZHAO H Y, ZHANG J, et al. Drying characteristics of Chaenomeles sinensis with different drying methods based on Dincer model[J]. Chinese Traditional and Herbal Drugs,2020,51(15):3911−3921. doi: 10.7501/j.issn.0253-2670.2020.15.010
|
[17] |
XIE L, ZHENG Z A, MUJUNNDAR A S, et al. Pulsed vacuum drying (PVD) of wolfberry: Drying kinetics and quality attributes[J]. Drying Technology,2018,36(12):1501−1514. doi: 10.1080/07373937.2017.1414055
|
[18] |
KARACABEY E, BUZRUL S. Modeling and predicting the drying kinetics of apple and pear: Application of the Weibull model[J]. Chemical Engineering Communications,2017,204(5):573−579. doi: 10.1080/00986445.2017.1291427
|
[19] |
JU H Y, ZHAO S H, MUJUNNDAR A S, et al. Energy efficient improvements in hot air drying by controlling relative humidity based on Weibull and Bi-Di models[J]. Food and Bioproducts Processing,2018,111:20−29. doi: 10.1016/j.fbp.2018.06.002
|
[20] |
XIE Y, GAO Z, LIU Y, et al. Pulsed vacuum drying of rhizoma dioscoreae slices[J]. LWT-Food Science and Technology,2017,80:237−249. doi: 10.1016/j.lwt.2017.02.016
|
[21] |
MCMINN W A M. Prediction of moisture transfer parameters for microwave drying of lactose powder using Bi-G drying correlation[J]. Food Research International,2004,37(10):1041−1047. doi: 10.1016/j.foodres.2004.06.013
|
[22] |
王红提, 郭康权, 李鹏, 等. 疏解棉秆的微波干燥动力学及能耗分析[J]. 农业工程学报,2015,31(19):294−301. [WANG H T, GUO K Q, LI P, et al. Microwave drying kinetics and energy consumption analysis of extruded cotton stalks[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(19):294−301. doi: 10.11975/j.issn.1002-6819.2015.19.040
|
[23] |
WANG J, LAW C L, NEMA P K, et al. Pulsed vacuum drying enhances drying kinetics and quality of lemon slices[J]. Journal of Food Engineering,2018,224:129−138. doi: 10.1016/j.jfoodeng.2018.01.002
|
[24] |
ARAL S, BESE A V. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity[J]. Food Chemistry,2016,210:577−584. doi: 10.1016/j.foodchem.2016.04.128
|
[25] |
张付杰, 辛立东, 代建武, 等. 猕猴桃片旋转托盘式微波真空干燥特性分析[J]. 农业机械学报,2020,51(S1):501−508. [ZHANG F J, XIN L D, DAI J W, et al. Rotating tray microwave vacuum drying characteristics of kiwifruit slices[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(S1):501−508. doi: 10.6041/j.issn.1000-1298.2020.S1.059
|
[26] |
刘春泉, 严启梅, 江宁, 等. 杏鲍菇真空微波干燥特性及动力学模型[J]. 核农学报,2012,26(3):494−0498. [LIU C Q, YAN Q M, JIANG N. Properties and dynamics model of vacuum microwave dried Pleurotus eryngii[J]. Journal of Nuclear Agricultural Sciences,2012,26(3):494−0498.
|
[27] |
孙悦, 刘云宏, 于慧春, 等. 基于Weibull分布函数的超声强化热风干燥紫薯的干燥特性及过程模拟[J]. 食品科学,2017,38(7):129−135. [SUN Y, LIU Y H, YU H C, et al. Drying characteristics and process simulation of ultrasound-assisted hot air drying of purple-fleshed sweet potato based on Weibull distribution model[J]. Food Science,2017,38(7):129−135. doi: 10.7506/spkx1002-6630-201707021
|
[28] |
江宁. 低频热超声对双孢菇微波真空干燥效能及热电物理特性的影响[D]. 南京: 南京农业大学, 2018.
JIANG N. Effect of low frequency thermosonication on efficiency and thermoelectric physical characteristics of Agaricus bisporus under microwave vacuum drying[D]. Nanjing: Nanjing Agricultural University, 2018.
|
[29] |
潘小莉, 张帆, 刘永富, 等. 基于Weibull分布函数的龙眼果肉微波真空干燥模拟研究[J]. 农机化研究,2021(4):179−184. [PAN X L, ZHANG F, LIU Y F, et al. Research and modeling microwave vacuum drying of peeled longan based on Weibull distribution function[J]. Journal of Agricultural Mechanization Research,2021(4):179−184. doi: 10.3969/j.issn.1003-188X.2021.04.033
|
[30] |
XIAO H W, BAI J W, XIE L, et al. Thin-layer air impingement drying enhances drying rate of American ginseng (Panax quinquefolium L.) slices with quality attributes considered[J]. Food and Bioproducts Processing,2015,94:581−591. doi: 10.1016/j.fbp.2014.08.008
|
[31] |
ZHAO Y, JIANG Y, ZHENG B, et al. Influence of microwave vacuum drying on glass transition temperature, gelatinization temperature, physical and chemical qualities of lotus seeds[J]. Food Chemistry,2017,228:167−176. doi: 10.1016/j.foodchem.2017.01.141
|