Citation: | JIANG Zongbo, XU Jun, SHI Fen, et al. Effects of Hydroxypropyl Methylcellulose and Xanthan Gum Concentrations on Virgin Coconut Oil Emulsion and Construction of Template Oleogel[J]. Science and Technology of Food Industry, 2022, 43(7): 102−109. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070166. |
[1] |
SENEVIRATNE K N, DISSANAYAKE D. Variation of phenolic content in coconut oil extracted by two conventional methods[J]. International Journal of Food Science & Technology,2008,43(4):597−602.
|
[2] |
SENEVIRATNE K N, HAPUARACHCHL C D, EKANAYAKES. Comparison of the phenolic-dependent antioxidant properties of coconut oil extracted under cold and hot conditions[J]. Food Chemistry,2009,114(4):1444−1449. doi: 10.1016/j.foodchem.2008.11.038
|
[3] |
ROHMAN A, IRNAWATI J, ERWANTO Y, et al. Virgin coconut oil: Extraction, physicochemical properties, biological activities and its authentication analysis[J]. Food Reviews International,2021,37(1):46−66. doi: 10.1080/87559129.2019.1687515
|
[4] |
CARDOSO D A, MOREIRA A S B, LUIZ R R, et al. A coconut extra virgin oil-rich diet increases HDL cholesterol and decreases waist circumference and body mass in coronary artery disease patients[J]. Nutricion Hospitalaria,2015,32(5):2144−2152.
|
[5] |
ST-ONGE M P, BOURQUE C, JONES P, et al. Medium-versus long-chain triglycerides for 27 days increases fat oxidation and energy expenditure without resulting in changes in body composition in overweight women[J]. International Journal of Obesity & Related Metabolic Disorders Journal of the International Association for the Study of Obesity,2003,27(1):95.
|
[6] |
NARAYANANKUTTY A, ILLAM S P, RAGHAVAMENON A C. Health impacts of different edible oils prepared from coconut (Cocos nucifera): A comprehensive review[J]. Trends in Food Science & Technology,2018,80:1−7.
|
[7] |
JAMJAI U, PONGPAIBUL Y, LAILERD N, et al. Antioxidant, anti-tyrosinase and anti-collagenase activities of virgin coconut oil and stability of its cream[J]. Maejo International Journal of Science and Technology,2020,14(2):166−176.
|
[8] |
ILLAM S P, NARAYANANKUTTY A, KANDIYIL S P, et al. Variations in natural polyphenols determine the anti-inflammatory potential of virgin coconut oils[J]. Journal of Food Science,2021,86(5):1620−1628. doi: 10.1111/1750-3841.15705
|
[9] |
DOAN C D, TAVERNIER I, OKURO P K, et al. Internal and external factors affecting the crystallization, gelation and applicability of wax-based oleogels in food industry[J]. Innovative Food Science & Emerging Technologies,2018,45:42−52.
|
[10] |
DA S T, ARELLANO D B, MARTINI S. Physical properties of candelilla wax, monoacylglycerols, and fully hydrogenated oil oleogels[J]. Journal of the American Oil Chemists Society,2018,95(7):797−811. doi: 10.1002/aocs.12096
|
[11] |
GAUDINO N, GHAZANI S M, CLARK S, et al. Development of lecithin and stearic acid based oleogels and oleogel emulsions for edible semisolid applications[J]. Food Research International,2019,116:79−89. doi: 10.1016/j.foodres.2018.12.021
|
[12] |
WILLETT S A, AKOH C C. Encapsulation of menhaden oil structured lipid oleogels in alginate microparticles[J]. LWT-Food Science and Technology,2019:116.
|
[13] |
JABERI R, NIA A P, NAJIT S, et al. Rheological and structural properties of oleogel base on soluble complex of egg white protein and xanthan gum[J]. Journal of Texture Studies,2020,51(6):925−936. doi: 10.1111/jtxs.12552
|
[14] |
AGUILAR-ZARATE M, MACIAS-RODRIGUEZ B A, TORO-VAZQUEZ J F, et al. Engineering rheological properties of edible oleogels with ethylcellulose and lecithin[J]. Carbohydrate Polymers,2019,205:98−105. doi: 10.1016/j.carbpol.2018.10.032
|
[15] |
ALVAREZ M D, COFRADES S, ESPERT M, et al. The rmorhe ological characterization of healthier reduced-fat cocoa butter formulated by substitution with a hydroxypropyl methylcellulose (HPMC)-based oleogel[J]. Foods,2021,10(4):793. doi: 10.3390/foods10040793
|
[16] |
PATEL A R, CLUDTS N, BIN SINTANG M D, et al. Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application[J]. Food & Function,2014,5(11):2833−2841.
|
[17] |
PATEL A R. Alternative routes to oil structuring[M]. 2015: Springer International Publishing.
|
[18] |
JIANG Z F, GAO W, DU X J, et al. Development of low-calorie organogel from sn-2 position-modified coconut oil rich in polyunsaturated fatty acids[J]. Journal of Oleo Science,2019,68(5):399−408. doi: 10.5650/jos.ess18210
|
[19] |
YANG S, ZHU M P, WANG N, et al. Influence of oil type on characteristics of sitosterol and stearic acid based oleogel[J]. Food Biophysics,2018,13(4):362−373. doi: 10.1007/s11483-018-9542-7
|
[20] |
JIANG Y, LIU L L, WANG B J, et al. Cellulose-rich oleogels prepared with an emulsion-templated approach[J]. Food Hydrocolloids,2018,77:460−464. doi: 10.1016/j.foodhyd.2017.10.023
|
[21] |
ABDOLNNALEKI K, ALIZADEH L, NAYEBZADEH K, et al. Oleogel production based on binary and ternary mixtures of sodium caseinate, xanthan gum, and guar gum: Optimization of hydrocolloids concentration and drying method[J]. Journal of Texture Studies,2020,51(2):290−299. doi: 10.1111/jtxs.12469
|
[22] |
TAVERNIER I, PATEL A R, MEEREN P V D, et al. Emulsion-templated liquid oil structuring with soy protein and soy protein: κ-carrageenan complexes[J]. Food Hydrocolloids,2017,67:360−454.
|
[23] |
PATEL A R, RAJARETHINEM P S, CLUDTS N, et al. Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates[J]. Langmuir,2015,31(7):2065−2073. doi: 10.1021/la502829u
|
[24] |
XU X F, SUN Q J, MCCLEMENTS D J. Enhancing the formation and stability of emulsions using mixed natural emulsifiers: Hydrolyzed rice glutelin and quillaja Saponin[J]. Food Hydrocolloids,2019,89:396−405. doi: 10.1016/j.foodhyd.2018.11.020
|
[25] |
MENG Z, QI K Y, GUO Y, et al. Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose[J]. Food Chemistry,2018,246:137−149. doi: 10.1016/j.foodchem.2017.10.154
|
[26] |
KANAGARATNAM S, HOQUE M E, SAHRI M M, et al. Investigating the effect of deforming temperature on the oil-binding capacity of palm oil based shortening[J]. Journal of Food Engineering,2013,118(1):90−99. doi: 10.1016/j.jfoodeng.2013.03.021
|
[27] |
KHOURYIEH H, PULI G, WILLIAMS K, et al. Effects of xanthan-locust bean gum mixtures on the physicochemical properties and oxidative stability of whey protein stabilised oil-in-water emulsions[J]. Food Chemistry,2015,167:340−348. doi: 10.1016/j.foodchem.2014.07.009
|
[28] |
THAREJA P, SARASWAT Y C, OBEROI C. Ovalbumin-stabilized concentrated emulsion gels[J]. Bulletin of Materials Science,2020,43(1):194. doi: 10.1007/s12034-020-02163-x
|
[29] |
LI X Y, AL-ASSAF S, FANG Y P, et al. Competitive adsorption between sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) at the oil/water interface[J]. Carbohydrate Polymers,2013,91(2):573−580. doi: 10.1016/j.carbpol.2012.08.075
|
[30] |
KIM H S, MASON T G. Advances and challenges in the rheology of concentrated emulsions and nanoemulsions[J]. Advances in Colloid and Interface Science,2017,247:397−412. doi: 10.1016/j.cis.2017.07.002
|
[31] |
NIU F G, NIU D B, ZHANG H J, et al. Ovalbumin/gum arabic-stabilized emulsion: Rheology, emulsion characteristics, and raman spectroscopic study[J]. Food Hydrocolloids,2016,52:607−614. doi: 10.1016/j.foodhyd.2015.08.010
|
[32] |
ESPERT M, SALVADOR A, SANZ T. Cellulose ether oleogels obtained by emulsion-templated approach without additional thickeners[J]. Food Hydrocolloids,2020:109.
|
[33] |
MENG Z, QI K Y, GUO Y, et al. Physical properties, microstructure, intermolecular forces, and oxidation stability of soybean oil oleogels structured by different cellulose ethers[J]. European Journal of Lipid Science and Technology,2018,120(6):287.
|
[34] |
GEORGE J, KUMAR R, SAJEEVKUMAR V A, et al. Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles[J]. Carbohydrate Polymers,2014,105:285−292. doi: 10.1016/j.carbpol.2014.01.057
|