WANG Mengmeng, XIE Yong, CAI Mengsi, et al. Preparation, Characterization and in Vitro Release Performance Evaluation of Konjac Glucomannan Microparticles Loaded with Proanthocyanidins[J]. Science and Technology of Food Industry, 2022, 43(5): 237−244. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070330.
Citation: WANG Mengmeng, XIE Yong, CAI Mengsi, et al. Preparation, Characterization and in Vitro Release Performance Evaluation of Konjac Glucomannan Microparticles Loaded with Proanthocyanidins[J]. Science and Technology of Food Industry, 2022, 43(5): 237−244. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070330.

Preparation, Characterization and in Vitro Release Performance Evaluation of Konjac Glucomannan Microparticles Loaded with Proanthocyanidins

More Information
  • Received Date: July 26, 2021
  • Available Online: December 26, 2021
  • In this study, konjac glucomannan was used as wall material and proanthocyanidins as core material. The micro-swelling properties of KGM in the ethanol system were used to prepare PC-loaded KGM microparticles, which provided a new technical idea for colon-targeted delivery of PC. KGM/PC microparticles were prepared by KGM adsorption of PC dissolved in ethanol aqueous solution. Single factor experiment and orthogonal experiment were used to optimize the preparation process of KGM/PC microparticles, and the properties of the microparticles were characterized by particle size analysis, scanning electron microscopy, infrared spectroscopy, etc. The release performance of the microparticles in vitro was investigated. The results showed that KGM could successfully encapsulate PC and the loading rate of PC was significantly affected by KGM and the amount of PC added. The optimum process conditions of encapsulating PC with KGM determined by orthogonal optimization, that is, when 16% (w:v) KGM (particle size 50~90 μm) and 11% (w:v) PC were added into 10% (v:v) ethanol solution, the loading rate of PC was (14.75%±0.27%). At the same time, after digestion in the stomach and small intestine for 4 h, 79.47% of PC in the KGM/PC microparticles was not released and reached the colon. To sum up, the encapsulated microparticles have great potential in colon-targeted delivery, which can provide a simple, effective, and safe encapsulation technology for industrial production.
  • loading
  • [1]
    LIU L, NISHIHARA R, QIAN Z R, et al. Association between inflammatory diet pattern and risk of colorectal carcinoma subtypes classified by immune responses to tumor[J]. Gastroenterology,2017,153(6):1517−1530. doi: 10.1053/j.gastro.2017.08.045
    [2]
    NÚÑEZIGLESIAS M J, NOVIO S, GARCÍA C, et al. Co-adjuvant therapy efficacy of catechin and procyanidin b2 with docetaxel on hormone-related cancers in vitro[J]. International Journal of Molecular Sciences,2021,22(13):7178−7178. doi: 10.3390/ijms22137178
    [3]
    RAUF A, IMRAN M, ABU-IZNEID T, et al. Proanthocyanidins: A comprehensive review[J]. Biomedicine & Pharmacotherapy,2019,116(5):108999.
    [4]
    GRACE N J, EVANGELINE C S, SWAMINATHAN A, et al. Cytotoxicity and apoptotic cell death induced by vitis vinifera peel and seed extracts in a431 skin cancer cells[J]. Cytotechnology,2018,70(2):537−54. doi: 10.1007/s10616-017-0125-0
    [5]
    VAID M, SINGH T, PRASAD R, et al. Bioactive proanthocyanidins inhibit growth and induce apoptosis in hum an melanoma cells by decreasing the accum ulation of beta-catenin[J]. Int J Oncol,2016,48(2):624−34. doi: 10.3892/ijo.2015.3286
    [6]
    WU Y, MA N, SONG P X, et al. Grape seed proanthocyanidin affects lipid metabolism via changing gut microflora and enhancing propionate production in weaned pigs[J]. The Journal of Nutrition,2019,149(9):1523−1532. doi: 10.1093/jn/nxz102
    [7]
    付欣, 周浩, 钟清, 等. 原花青素-介孔二氧化硅纳米颗粒复合体制备及释放研究[J]. 食品科学技术学报,2020,38(1):67−73. [FU X, ZHOU H, ZHONG Q, et al. Study on preparation and release of proanthocyanidins-mesoporous silica nanoparticles complexes[J]. Journal of Food Science and Technology,2020,38(1):67−73. doi: 10.3969/j.issn.2095-6002.2020.01.009
    [8]
    吴晓琼, 贾定坤, 傅志贤, 等. 原花青素多重乳液水凝胶的制备及评价[J]. 粮食与油脂,2020,33(12):125−128. [WU X Q, JIA D K, BO Z X, et al. Preparation and evaluation of multiple emulsion hydrogel of procyanidin[J]. Grains and Fats,2020,33(12):125−128. doi: 10.3969/j.issn.1008-9578.2020.12.033
    [9]
    纪秀凤, 吕长鑫, 芦宇, 等. 红树莓籽低聚原花青素微胶囊制备工艺优化及其稳定性分析[J]. 食品工业科技,2019,40(3):165−172. [JI X F, LU C X, LU Y, et al. Optimization of preparation technology of microencapsulation of oligomeric proanthocyanidins from red raspberry seeds and its stability analysis[J]. Food Industry Science and Technology,2019,40(3):165−172.
    [10]
    ZHANG C, CHENJ D, YANG F Q. Konjac glucomannan, a promising polysaccharide for OCDDS[J]. Elsevier,2014,104:175−181.
    [11]
    WANG L, LIN L ZZ, CHEN X H, et al. Synthesis and characteristics of konjac glucomannan films incorporated with functionalized microcrystalline cellulose[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,563:237−245.
    [12]
    LI J Y, SUN F, ZHOU H F, et al. A systematic review exploring the anticancer activity and mechanisms of glucomannan[J]. Frontiers in Pharmacology,2019,10:930. doi: 10.3389/fphar.2019.00930
    [13]
    BAKHT R S, LI B, WANG L, et al. Health benefits of konjac glucomannan with special focus on diabetes[J]. Bioactive Carbohydrates and Dietary Fibre,2015,5(2):179−187. doi: 10.1016/j.bcdf.2015.03.007
    [14]
    YUAN Y, WANG L, MU R J, et al. Effects of konjac glucomannan on the structure, properties, and drug release characteristics of agarose hydrogels[J]. Carbohyd Polym,2018,190:196−203. doi: 10.1016/j.carbpol.2018.02.049
    [15]
    CHEN L G, LIU Z L, ZHUO R X. Synthesis and properties of degradable hydrogels of konjac glucomannan grafted acrylic acid for colon-specific drug delivery[J]. Polymer,2005,46(16):6274−6281. doi: 10.1016/j.polymer.2005.05.041
    [16]
    SHI C J, ZHU P, CHEN N, et al. Preparation and sustainable release of modified konjac glucomannan/chitosan nanospheres[J]. International Journal of Biological Macromolecules,2016,91:609−614. doi: 10.1016/j.ijbiomac.2016.05.073
    [17]
    石磊, 高哲, 刘丽南, 等. 四种原花青素含量测定方法比较[J]. 食品工业科技,2019,40(15):242−247,253. [SHI L, GAO Z, LIU L N, et al. Comparison of four methods for quantitation of proanthocyanidin[J]. Food Industry Science and Technology,2019,40(15):242−247,253.
    [18]
    毕会敏, 范方宇, 杨宗玲, 等. 纳米SiO2/大豆分离蛋白为壁材的核桃油微胶囊特性[J]. 食品与发酵工业,2020,46(21):147−153. [BI H M, FAN F Y, YANG Z L, et al. Characteristics of walnut oil microcapsules with nano-SiO2/soy protein isolate as wall material[J]. Food and Fermentation Industries,2020,46(21):147−153.
    [19]
    YAN L, ZENG F Y, CHEN Z J, et al. Improvement of wood decay resistance by salicylic acid/silica microcapsule: Effects on the salicylic leaching, microscopic structure and decay resistance[J]. International Biodeterioration & Biodegradation,2021,156:105−134.
    [20]
    ANA-ISABEL M C, EGGER L, PORTMANN R, et al. A standardised semi-dynamic in vitro digestion method suitable for food-an international consensus[J]. Food & Function,2020,11(2):1702−1720.
    [21]
    方坤, 李坚斌, 魏群舒, 等. 改性葡甘露聚糖/海藻酸钠微囊体外释药研究[J]. 食品与发酵工业,2018,44(12):86−91. [FANG K, LI J B, WEI Q S, et al. Drug-release of carboxymethyl konjac glucomannan-alginate microcapsule in vitro[J]. Food and Fermentation Industries,2018,44(12):86−91.
    [22]
    李培培. pH-时滞双敏感KGM-SA结肠靶向凝胶微丸的研究[D]. 成都: 成都中医药大学, 2016: 30−35.

    LI P P. The investigation of pH and time-lag double sensitive KGM–SA colon-targeted gel microspheres[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2016: 30−35.
    [23]
    SUSANTI D Y, SEDIAWAN W B, FAHRURROZI M, et al. Encapsulation of red sorghum extract rich in proanthocyanidins: Process formulation and mechanistic model of foam-mat drying at various temperature[J]. Chemical Engineering and Processing Process Intensification,2021(4):108375.
    [24]
    李耀玲, 林立, 王富聚, 等. 魔芋葡甘聚糖物理改性研究进展[J]. 包装与食品机械,2013,31(5):48−52. [LI Y L, LIN L, WANG F J, et al. Research progress in the physical modification of konjac glucomannan[J]. Packaging and Food Machinery,2013,31(5):48−52. doi: 10.3969/j.issn.1005-1295.2013.05.013
    [25]
    葛莹莹, 彭琪, 于永生. 石墨烯/魔芋葡甘聚糖多孔干凝胶的制备及对5-氟尿嘧啶的吸附和释药研究[J]. 西北药学杂志,2020,35(3):413−417. [GE Y Y, PENG Q, YU Y S, et al. Preparation of graphene/konjac glucomannan porous xerogel and study on its adsorption and drug release properties for 5-fluorouracil[J]. Northwest Pharmaceutical Journal,2020,35(3):413−417. doi: 10.3969/j.issn.1004-2407.2020.03.022
    [26]
    唐兰兰, 张世奇, 卫子颜, 等. 红外烘烤对魔芋葡甘露聚糖表观黏度以及微观结构的影响[J/OL]. 食品科学: 1−11 [2021-03-25]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201229.0957.046.html.

    TANG L L, ZHANG S Q, WEI Z Y, et al. Study on the effect of apparent viscosity and micro-structure of konjac glucomannan under infrared baking heat treatment[J/OL]. Food Science: 1−11 [2021-03-25].
    [27]
    VOLNEI B S, MARCELO T, MARIANA A. et al. Functional properties and encapsulation of a proanthocyanidin rich cinnamon extract (Cinnamomum zeylanicum) by complex coacervation using gelatin and different polysaccharides[J]. Food Hydrocolloids,2018,77:297−306. doi: 10.1016/j.foodhyd.2017.09.040
    [28]
    石泽栋, 蒋雅萍, 孙英杰, 等. 牛至精油微胶囊的制备、表征及在杏贮藏期的抑菌效果[J]. 食品科学,2021,42(11):186−194. [SHI Z D, JIANG Y P, SUN Y J, et al. Preparation and characterization of oregano essential oil microcapsules and its sterilization effects on apricot fruit during storage[J]. Food Science,2021,42(11):186−194. doi: 10.7506/spkx1002-6630-20200712-155
    [29]
    宁亚维, 王瑶, 侯琳琳, 等. Brevilaterin微胶囊化技术及缓释特性分析[J]. 食品科学,2021,42(4):38−43. [NING Y W, WANG Y, HOU L L, et al. Optimization of brevilaterin microencapsulation and analysis of slow release characteristics[J]. Food Science,2021,42(4):38−43. doi: 10.7506/spkx1002-6630-20191120-237
    [30]
    吴妹. 魔芋葡甘聚糖凝胶稳定性及其动力学分析[D]. 福州: 福建农林大学, 2015.

    WU M. Study on gel stability and dynamics of konjac glucomannan[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015.
    [31]
    FITTREE H, SANTAD W, PISSARED K. Amelioration of gut dysbiosis and gastrointestinal motility by konjac oligo-glucomannan on loperamide-induced constipation in mice[J]. Nutrition,2020,73:110715. doi: 10.1016/j.nut.2019.110715
    [32]
    XU Q, HUANG W J, JIANG L B, et al. KGM and PMAA based pH-sensitive interpenetrating polymer network hydrogel for controlled drug release[J]. Carbohydrate Polymers,2013,97(2):565−570. doi: 10.1016/j.carbpol.2013.05.007

Catalog

    Article Metrics

    Article views (251) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return