Citation: | WANG Bo, HU Xiaoyan, YU Fangzhu, et al. Making Roasted Mutton Colourimetric Card Based on Machine Vision Technology[J]. Science and Technology of Food Industry, 2022, 43(3): 10−17. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070346. |
[1] |
周光宏. 肉品加工学[M]. 北京: 中国农业出版社, 2008: 234−238.
ZHOU G H. Meat processing[M]. Beijing: China Agricultural Press, 2008: 234−238.
|
[2] |
张德权, 惠腾, 王振宇. 我国肉品加工科技现状及趋势[J]. 肉类研究,2020,34(1):1−8. [ZHANG D Q, HUI T, WANG Z Y. Current situation and futre trend of meat processing technology in china[J]. Meat Science,2020,34(1):1−8. doi: 10.7506/rlyj1001-8123-20191029-256
|
[3] |
王丽, 李雪, 李亮, 等. 天然提取物在传统肉制品加工中的应用研究进展[J]. 食品安全质量检测学报,2020,11(8):2558−2563. [WANG L, LI X, LI L, et al. Research progress on the application of natural extracts in the processing of traditional meat products[J]. Journal of Food Safety & Quality,2020,11(8):2558−2563.
|
[4] |
ZHUANG H, BOWKER B. Effect of marination on lightness of broiler breast fillets varies with raw meat color attributes[J]. LWT-Food Science and Technology,2016,69:233−235. doi: 10.1016/j.lwt.2016.01.054
|
[5] |
RAMIREZ R, CAVA R. The crossbreeding of different Duroc lines with the Iberian pig affects colour and oxidative stability of meat during storage[J]. Meat Science,2007,77(3):339−347. doi: 10.1016/j.meatsci.2007.04.002
|
[6] |
汤夕瑶, 张旭飞, 任惠峰, 等. 冷藏过程中凡纳滨对虾颜色变化与鲜度指标间的相关性研究[J/OL]. 食品与发酵工业: 1−13 [2021-08-26].
TANG X Y, ZHANG X F, REN H F, et al. Study on the correlation between the color change and freshness indexes of Litopenaeus vannamei during cold storage [J/OL]. Food and Fermentation Industries: 1−13[2021-08-26]. https://doi.org/10.13995/j.cnki.11-1802/ts.027896.
|
[7] |
杨兆甜, 李方巍, 王震昊, 等. 食品颜色评价及在食品工业中的应用[J/OL]. 食品工业科技: 1−10 [2021-08-26].
YANG Z T, LI F W, REN Z H, et al. Food color evaluation and application in food industry [J/OL]. Science and Technology of Food Industry: 1−10 [2021-08-26]. https://doi.org/10.13386/j.issn1002-0306.2020110045.
|
[8] |
杨晟, 张巧, 廖汝娥. 比色卡法快速测定环境水体中氮磷的研究[J]. 广东化工,2018,45(22):111−113. [YANG S, ZHANG Q, LIAO R E. Study on rapid of nitrogen and phorus in aquatic water using colorimetic card method[J]. Guangdong Chemical Industry,2018,45(22):111−113. doi: 10.3969/j.issn.1007-1865.2018.22.052
|
[9] |
GIUSEPPE V, JÖRN S, FRAUKE S, et al. Evaluation of new colorimetric vitex 2 yeast identification card by use of different source media[J]. Journal of Clinical Microbiology,2008,46(11):3784−3787. doi: 10.1128/JCM.01318-08
|
[10] |
王亭. 基于机器视觉的面饼检测开发系统[D]. 成都: 电子科技大学, 2020.
WANG T. Development of cake defect system based on machine vision[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
[11] |
KERRY J P, LEDWARD D, KERRY J P, et al. Improving the sensory and nutritional quality of fresh meat, J. P. Kerry, D. Ledward (Eds.). Woodhead Publishing and CRC Press[J]. Meat Science,2009,83(2):337. doi: 10.1016/j.meatsci.2009.05.005
|
[12] |
贾磊, 陈俊超. 机器视觉的水产食品外观品质检测系统[J]. 食品工业,2021,42(5):266−268. [JIA L, CHEN J C. Mechine vision inspection for appearance quality of aquaic food[J]. The Food Industry,2021,42(5):266−268.
|
[13] |
KE L T, LIN J L, LI M Y, et al. Selection for high quality pepper seeds by machine vision and classifiers[J]. Journal of Integrative Agriculture,2018,17(9):1999−2006. doi: 10.1016/S2095-3119(18)62031-3
|
[14] |
DAUGAARD S R B, ADLER-NISSEN J, CARSTENSEN J M. New vision technology for multidimensional quality monitoring of continuous frying of meat[J]. Food Control,2010,21(5):626−632. doi: 10.1016/j.foodcont.2009.09.007
|
[15] |
AMIN TAHERI-GARAVAND, SOODABEH F, MAHMOUD O, et al. Meat quality evaluation based on computer vision technique: A review[J]. Meat science,2019,156:183−195. doi: 10.1016/j.meatsci.2019.06.002
|
[16] |
SUN X, YOUNG J, LIU J H, et al. Prediction identify of pork loin quality using online computer vision system and artificial intelligence model[J]. Meat Science,2018,140:72−77. doi: 10.1016/j.meatsci.2018.03.005
|
[17] |
NYALALA I, OKINDA C, KUNJIE C, et al. Weight and volume estimation of poultry and products based on computer vision systems: A review[J]. Poultry Science,2021,100(5):101072. doi: 10.1016/j.psj.2021.101072
|
[18] |
胡煌, 吕飞, 丁玉庭. 肉制品的呈色机理和色泽评定研究进展[J]. 肉类研究,2016,30(12):48−53. [HU H, LV F, DING Y T. Progress in coloration mechanism and color assessment of meat products[J]. Meat Research,2016,30(12):48−53.
|
[19] |
TOMASEVIC I, TOMOVIC , MILOVANOVIC B, et al. Comparison of a computer vision system vs. traditional colorimeter for color evaluation of meat products with various physical properties[J]. Meat Science,2019,148:5−22. doi: 10.1016/j.meatsci.2018.09.015
|
[20] |
郭爱玲, 马世榜, 刘伟, 等. 基于机器视觉技术的牛肉大理石花纹自动检测系统[J]. 南阳师范学院学报,2017,16(6):13−16. [GUO A L, MA S B, LIU W, et al. Automatic detection system of beef marbling based on machine vision technology[J]. Journal of Nanyang Normal University,2017,16(6):13−16. doi: 10.3969/j.issn.1671-6132.2017.06.004
|
[21] |
王巧华, 王彩云, 马美湖. 基于机器视觉的鸭蛋新鲜度检测[J]. 中国食品学报,2017,17(8):268−274. [WANG Q H, WANG C Y, MA M H. Duck eggs’ freshness detection based on machine vision technology[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(8):268−274.
|
[22] |
陆逢贵. 基于机器视觉技术的糖熏鸡腿颜色识别研究[D]. 锦州: 渤海大学, 2020
LU F G. Research on color recognition of sugar-smoked chicken thighs based on machine vision technology [D]. Jinzhou: Bohai University, 2020.
|
[23] |
刘登勇, 陆逢贵, 王博, 等. 一种用于评价熏鸡品质的比色卡及应用: 中国, CN201910924755.3[P]. 2020-01-03.
LIU D Y, LU F G, WANG B, et al. A color card and application for evaluating the quality of smoked chicken: China, CN201910924755.3[P]. 2020-01-03.
|
[24] |
KOUHI ESFAHANI R, SHAHBAZI F, AKBARZADEH M. Three phase classification of an uninterrupted traffic flow: A K-means clustering study[J]. Transportmetrica B,2019,7(1):546−558.
|
[25] |
BARCA J C, RUMANTIR G. A modified K-means algorithm for noise reduction in optical motion capture data[C]. Computer and Information Science, 2007. ICIS 2007. 6th IEEE/ACIS International Conference on, 2007.
|
[26] |
LIU D, LI J. Safety monitoring data classification method based on wireless rough network of neighborhood rough sets[J]. Safety Science,2019,118:103−108. doi: 10.1016/j.ssci.2019.05.004
|
[27] |
HASHEMZADEH M, ZADEMEHDI A. Fire detection for video surveillance applications using ICA K-medoids-based color model and efficient spatio-temporal visual features[J]. Expert Systems with Applications,2019,130(Sep.):60−78.
|
[28] |
中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会. GB/T16291.1-2012. 感官分析选拔、培训与管理评价员一般导则[S]. 北京: 中国标准出版社, 2012.
General Administration of Quality Supervision, Inspection and Quarantine o of the People's Republic of China China National standardizing committee. GB/T16291.1-2012. General guidelines for sensory analysis selection, training and management of evaluators[S]. Beijing: Standards Press of China, 2012.
|
[29] |
A N LEPPER-BLILIE E P. Consumer evaluation of palatability characteristics of a beef value-added cut compared to common retail cuts[J]. Meat Science,2014,96(1):419−422. doi: 10.1016/j.meatsci.2013.08.002
|
[30] |
徐静, 宋健, 武杰, 等. 响应面法优化柠檬酸嫩化鸭肉效果的研究[J]. 安徽科技学院学报,2019,33(3):60−65. [XU J, SONG J, WU J, et al. Response surface methodology for tendering duck meat by citric acid[J]. Journal of Anhui Science and Technology University,2019,33(3):60−65.
|
[31] |
孙甜甜, 赵镭, 钟葵, 等. 响应面法优化低盐麻辣火锅底料配方工艺研究[J]. 中国调味品,2021,46(1):128−134. [SUN T T, ZHAO L, ZHONG K, et al. Study on optimizing the foemuia of low-salt spicy hotpot seasonings by response surface method[J]. China Condiment,2021,46(1):128−134. doi: 10.3969/j.issn.1000-9973.2021.01.027
|
[32] |
黄旭, 凌志刚, 李绣心. 融合判别式深度特征学习的图像识别算法[J]. 中国图象图形学报,2018,23(4):510−518. [HUAGN X, LING Z G, LI X X. Discriminative deep feature learning method by fusing linear discriminant analysis for image recognition[J]. Journal of Image and Graphics,2018,23(4):510−518.
|
[33] |
ZHANG D, SHI K, GUO Z, et al. A class of elliptic systems with discontinuous variable exponents and L 1 data for image denoising[J]. Nonlinear Analysis: Real World Applications,2019,50:448−468. doi: 10.1016/j.nonrwa.2019.05.012
|