WANG Qiudan, ZHAO Kaidi, LIN Changqing. Study on Antioxidant Properties of Pueraria lobata Polysaccharides and Its Hypoglycemic Effect [J]. Science and Technology of Food Industry, 2022, 43(5): 381−388. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070357.
Citation: WANG Qiudan, ZHAO Kaidi, LIN Changqing. Study on Antioxidant Properties of Pueraria lobata Polysaccharides and Its Hypoglycemic Effect [J]. Science and Technology of Food Industry, 2022, 43(5): 381−388. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070357.

Study on Antioxidant Properties of Pueraria lobata Polysaccharides and Its Hypoglycemic Effect

More Information
  • Received Date: August 01, 2021
  • Available Online: December 24, 2021
  • Objective: To study the antioxidant activity of Pueraria lobata polysaccharide and its hypoglycemic effect. Method: The polysaccharides of Pueraria lobata were extracted by water extraction and alcohol precipitation method, and the polysaccharide content and the antioxidant capacity of Pueraria lobata polysaccharides were determined. Rats were intraperitoneally injected with streptozotocin (STZ) to establish a type 1 diabetes model (T1DM), which was divided into normal group (distilled water 100 mg/kg), model group (distilled water 100 mg/kg), high-dose Pueraria lobata polysaccharide group (100 mg/kg), Pueraria lobata polysaccharide low-dose group (50 mg/kg), positive group (metformin 100 mg/kg), the rats' body weight and fasting blood glucose (FBG) were measured regularly for 8 weeks. In the last week, an oral glucose tolerance (OGTT) test was performed, and rat serum and liver were taken to determine the changes in lipid metabolism indexes and related oxidases in rats. Results: The content of Pueraria lobata polysaccharide was 87.80%, and the scavenging abilities of DPPH·, ABTS+·, ·OH, and PTIO were 90.2%, 83.3%, 81.3%, and 89.0% at a concentration of 1000 μg/mL, respectively. Compared with the model group, Pueraria lobata polysaccharide could effectively alleviate the weight loss of T1DM rats, significantly reduced their FBG (P<0.05), and significantly increased the level of OGTT (P<0.05). After high-dose treatment with Pueraria lobata polysaccharide, TC, TG, the levels of LDL-C and MDA decreased significantly, and the levels of HDL-C, SOD, GSH and CAT increased significantly (P<0.05). All indicators were dose-dependent. Conclusion: Pueraria lobata polysaccharide has good antioxidant properties and can reduce blood sugar by improving lipid metabolism and oxidative stress in T1DM rats.
  • loading
  • [1]
    陈艳, 文佳玉, 谢晓芳, 等. 葛根的化学成分及药理作用研究进展[J]. 中药与临床,2021,12(1):53−60. [CHEN Yan, WEN Jiayu, XIE Xiaofang, et al. Research progress on the chemical constituents and pharmacological effects of Pueraria lobata[J]. Chinese Materia Medica and Clinics,2021,12(1):53−60. doi: 10.3969/j.issn.1674-926X.2021.01.013
    [2]
    刘秀明, 李涛, 李源栋, 等. 基于NIR分析和模式识别技术的葛根品种及产地判别[J]. 食品工业科技,2018,39(22):247−251. [LIU Xiuming, LI Tao, LI Yuandong, et al. Discrimination of Pueraria lobata variety and origin based on NIR analysis and pattern recognition technology[J]. Food Industry Science and Technology,2018,39(22):247−251.
    [3]
    黄晓巍, 张丹丹, 王晋冀, 等. 葛根化学成分及药理作用[J]. 吉林中医药,2018,38(1):87−89. [HUANG Xiaowei, ZHANG Dandan, WANG Jinji, et al. Chemical constituents and pharmacological effects of Pueraria lobata root[J]. Jilin Journal of Traditional Chinese Medicine,2018,38(1):87−89.
    [4]
    WEI L T, ZHU P C, CHEN X Q, et al. Anultra high performance liquid chromatography with tandem mass spectrometry method for simult aneous determinati on of thirteen components extracted from Radix Puerariae in rat plasma and tissues: Application to pharmaco kinetic and tissue distribution study[J]. Journal of Separation Science,2020,43(2):418−437. doi: 10.1002/jssc.201900824
    [5]
    蔡琳. 葛根的化学成分、药理及临床作用的研究进展[J]. 山东化工,2014,43(8):40−41. [CAI Lin. Research progress on the chemical constituents, pharmacology and clinical effects of Pueraria lobata[J]. Shandong Chemical Industry,2014,43(8):40−41. doi: 10.3969/j.issn.1008-021X.2014.08.014
    [6]
    李树欣. 葛根的化学成分及药理作用的研究进展[J]. 辽宁化工,2020,49(11):1412−1413,1417. [LI Shuxin. Research progress on the chemical constituents and pharmacological effects of Pueraria lobata[J]. Liaoning Chemical Industry,2020,49(11):1412−1413,1417. doi: 10.3969/j.issn.1004-0935.2020.11.023
    [7]
    孙华, 李春燕, 薛金涛. 葛根的化学成分及药理作用研究进展[J]. 新乡医学院学报,2019,36(11):1097−1101. [SUN Hua, LI Chunyan, XUE Jintao. Research progress on the chemical constituents and pharmacological effects of Pueraria lobata[J]. Journal of Xinxiang Medical College,2019,36(11):1097−1101.
    [8]
    CHEN R, LIU B, WANG X Y, et al. Effects of polysaccharide from Pueraria lobata on gut microbiota in mice[J]. International Journal of Biological Macromolecules,2020,158:740−749. doi: 10.1016/j.ijbiomac.2020.04.201
    [9]
    沈宇, 李野, 张翼, 等. 植物果胶多糖结构与免疫活性研究进展[J]. 中医药学报,2021,49(5):107−110. [SHEN Yu, LI Ye, ZHANG Yi, et al. Research progress on the structure and immune activity of plant pectin polysaccharides[J]. Journal of Traditional Chinese Medicine,2021,49(5):107−110.
    [10]
    CHEN Min. Arctium lappa L. polysaccharide can regulate lipid metabolism in type 2 diabetic rats through the SREBP-1/SCD-1 axis[J]. Carbohydrate Research,2020,494:108055−108055. doi: 10.1016/j.carres.2020.108055
    [11]
    唐健波, 吕都, 彭梅, 等. 酶法辅助热水浸提刺梨多糖工艺优化及其抗肿瘤活性研究[J/OL]. 食品工业科技: 1−11 [2021-07-28]. https://doi.org/10.13386/j.issn1002-0306.2021030147.

    TANG Jianbo, LV Du, PENG Mei, et al. Enzymatic-assisted hot water extraction process optimization and anti-tumor activity of pear polysaccharides[J/OL]. Food Industry Science and Technology: 1−11 [2021-07-28]. https://doi.org/10.13386/j.issn1002-0306.2021030147.
    [12]
    李丹丹, 王丽华, 赵丽华, 等. 糖尿病慢病管理系统及数据研究现状及面临问题[J]. 医学信息,2020,33(19):24−27. [LI Dandan, WANG Lihua, ZHAO Lihua, et al. Diabetes chronic disease management system and data research status and problems[J]. Medical Information,2020,33(19):24−27. doi: 10.3969/j.issn.1006-1959.2020.19.008
    [13]
    HELEN R M, CARLA H, JACKIE O, et al. Characteristics and outcomes of pregnant women with type 1 or type 2 diabetes: A 5-year national population-based cohort study[J]. Lancet Diabetes & Endocrinology,2021,9(3):153−164.
    [14]
    KARAM S L, DENDY J, POLU S, et al. Overview of therapeutic inertia in diabetes: Prevalence, causes, and consequences[J]. Diabetes Spectr,2020,3(1):8−15.
    [15]
    杨飞, 董昕昕, 郭赟. 葛根素对2型糖尿病大鼠的治疗作用[J]. 中国应用生理学杂志,2019,35(4):355−358. [YANG Fei, DONG Xinxin, GUO Yun. Effect of puerarin on type 2 diabetes in rats[J]. Chinese Journal of Applied Physiology,2019,35(4):355−358. doi: 10.12047/j.cjap.5786.2019.075
    [16]
    YANG L, CHEN J, LU H, et al. Pueraria lobata for diabetes mellitus: Past, present and future[J]. Am J Chin Med,2019,47(7):1419−1444. doi: 10.1142/S0192415X19500733
    [17]
    SUN R, DENG X, ZHANG D, et al. Anti-diabetic potential of Pueraria lobata root extract through promoting insulin signaling by PTP1B inhibition[J]. Bioorg Chem,2019,87:12−15. doi: 10.1016/j.bioorg.2019.02.046
    [18]
    朱家庆, 唐婷范, 刘新梅, 等. 葛根多糖纯化工艺及其抗氧化性能研究[J]. 食品工业科技,2020,41(24):131−136. [ZHU Jiaqing, TANG Tingfan, LIU Xinmei, et al. Purification process of Pueraria lobata polysaccharide and its antioxidant properties[J]. Food Industry Science and Technology,2020,41(24):131−136.
    [19]
    阚晓月. 葛根多糖降血脂活性及其脂质体的制备研究[D]. 镇江: 江苏大学, 2019.

    KAN Xiaoyue. Study on the blood lipid-lowering activity of Pueraria lobata polysaccharide and its liposome preparation[D]. Zhenjiang: Jiangsu University, 2019.
    [20]
    钱凯. 葛根多糖的分离、结构表征及其降糖活性研究[D]. 南昌: 江西中医药大学, 2020.

    QIAN Kai. Isolation, structure characterization and hypoglycemic activity of Pueraria lobata polysaccharide[D]. Nanchang: Jiangxi University of Traditional Chinese Medicine, 2020.
    [21]
    马伟, 张美琦, 刘振鹏, 等. 正交试验对人参多糖水提醇沉工艺的优化[J]. 东北林业大学学报,2019,47(12):90−94. [MA Wei, ZHANG Meiqi, LIU Zhenpeng, et al. Optimization of water extraction and alcohol precipitation process of ginseng polysaccharide by orthogonal test[J]. Journal of Northeast Forestry University,2019,47(12):90−94.
    [22]
    纪宝玉, 裴莉昕, 陈随清, 等. 葛根不同生长期多糖含量的动态积累研究[J]. 中国实验方剂学杂志,2013,19(16):63−65. [JI Baoyu, PEI Lixin, CHEN Suiqing, et al. Study on the dynamic accumulation of polysaccharide content in different growth periods of Pueraria lobata[J]. Chinese Journal of Experimental Formulas,2013,19(16):63−65.
    [23]
    李钊至, 吕敏, 梁魏, 等. 糖尿病大鼠模型的建立及评价[J]. 基层医学论坛,2017,21(1):4−5. [LI Zhaozhi, LV Min, LIANG Wei, et al. Establishment and evaluation of diabetic rat model[J]. Forum on Primary Medicine,2017,21(1):4−5.
    [24]
    蔡春沉, 徐燕颖, 王洪玺, 等. 葛根多糖对2型糖尿病大鼠的治疗作用及机制研究[J]. 天津中医药,2014,31(2):94−97. [CAI Chunchen, XU Yanying, WANG Hongxi, et al. Study on the therapeutic effect and mechanism of Pueraria lobata polysaccharide on type 2 diabetic rats[J]. Tianjin Traditional Chinese Medicine,2014,31(2):94−97.
    [25]
    刘春梅. 健康体检者血清HDL-C、LDL-C和TG水平检测结果及其血脂异常的发生因素分析[J]. 中国医药指南,2018,16(13):138−139. [LIU Chunmei. Analysis of serum HDL-C, LDL-C and TG levels and the risk factors of dyslipidemia in healthy subjects[J]. Chinese Medical Guide,2018,16(13):138−139.
    [26]
    SASIDHARAKURUP H, DIWAKAR S. Computational modelling of TNF-α related pathways regulated by neuroinflammation, oxidative stress and insulin resistance in neurodegeneration[J]. Applied Network Science,2020,5(1):72. doi: 10.1007/s41109-020-00307-w
    [27]
    SUN B, JIA Y, YANG S, et al. Sodium butyrate protects against high-fat diet-induced oxidative stress in rat liver by promoting expression of nuclear factor E2-related factor 2[J]. British Journal of Nutrition,2019,122(4):1−29.
    [28]
    张琴, 李美东, 罗凯, 等. 植物多糖生物活性功能研究进展[J]. 湖北农业科学,2020,59(24):5−8,15. [ZHANG Qin, LI Meidong, LUO Kai, et al. Research progress on the biological activity of plant polysaccharides[J]. Hubei Agricultural Sciences,2020,59(24):5−8,15.
    [29]
    MUHAMMAD M A. Recent trends in chemical modification and antioxidant activities of plants-based polysaccharides[J]. Carbohydrate Polymer Technologies and Applications,2021,2:100045. doi: 10.1016/j.carpta.2021.100045
    [30]
    刘雅娜, 包晓玮, 王娟, 等. 沙棘多糖抗运动性疲劳及抗氧化作用的研究[J]. 食品工业科技,2021,42(10):321−326. [LIU Yana, BAO Xiaowei, WANG Juan, et al. Research on anti-exercise fatigue and antioxidant effects of seabuckthorn polysaccharides[J]. Food Industry Science and Technology,2021,42(10):321−326.
    [31]
    薛山, 巩子童, 林靖娟, 等. 芽球菊苣根粗多糖提取工艺优化及其体外抗氧化活性和相对分子量分析[J]. 食品工业科技,2021,42(10):138−145. [XUE Shan, GONG Zitong, LIN Jingjuan, et al. Optimization of extraction technology of crude polysaccharide from chicory root and analysis of its in vitro antioxidant activity and relative molecular weight[J]. Food Industry Science and Technology,2021,42(10):138−145.
    [32]
    ZHOU S Y, HUANG G L, CHEN G Y. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam[J]. Food Chemistry, 361,2021:130089.
    [33]
    郑朝安. 1型糖尿病的发病机制[J]. 国际儿科学杂志,2020(4):274−278. [ZHENG Chaoan. Pathogenesis of type 1 diabetes[J]. International Journal of Pediatrics,2020(4):274−278. doi: 10.3760/cma.j.issn.1673-4408.2020.04.014
    [34]
    孟祥云, 郭树明, 杨丽霞. 中药植物多糖对2型糖尿病胰岛素抵抗的作用机制研究进展[J]. 中国实验方剂学杂志,2017,23(8):220−225. [MENG Xiangyun, GUO Shuming, YANG Lixia. Research progress in the mechanism of Chinese herbal plant polysaccharides on insulin resistance in type 2 diabetes[J]. Chinese Journal of Experimental Formulas,2017,23(8):220−225.
    [35]
    董文南, 李克招, 张文婷, 等. 多糖降血糖作用及其机制研究进展[J]. 中国实验方剂学杂志,2019,25(19):219−225. [DONG Wennan, LI Kezhao, ZHANG Wenting, et al. Research progress in the hypoglycemic effect of polysaccharides and its mechanism[J]. Chinese Journal of Experimental Formulas,2019,25(19):219−225.
    [36]
    GUO W, ZHU S Q, LI S Y, et al. Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice[J]. International Journal of Biological Macromolecules,2021,182:1371−1383. doi: 10.1016/j.ijbiomac.2021.05.067
    [37]
    曾山容, 邓小敏, 易倍吉, 等. 中医药治疗2型糖尿病血脂异常的研究进展[J]. 大众科技,2021,23(4):73−75. [ZENG Shanrong, DENG Xiaomin, YI Beiji, et al. Research progress of TCM treatment of dyslipidemia in type 2 diabetes[J]. Popular Science and Technology,2021,23(4):73−75. doi: 10.3969/j.issn.1008-1151.2021.04.022
    [38]
    李秋云, 王彩宁, 史丽萍, 等. 2型糖尿病及前期患者胰岛素抵抗与脂代谢紊乱的关系[J]. 中国全科医学,2011(24):2716−2719. [LI Qiuyun, WANG Caining, SHI Liping, et al. The relationship between insulin resistance and lipid metabolism disorders in patients with type 2 diabetes and pre-diabetes[J]. Chinese General Practice,2011(24):2716−2719.
    [39]
    房丹, 周志焕. 中医药治疗2型糖尿病脂代谢异常的研究进展[J]. 光明中医,2019,34(24):3852−3854. [FANG Dan, ZHOU Zhihuan. Research progress of TCM treatment of abnormal lipid metabolism in type 2 diabetes[J]. Guangming Traditional Chinese Medicine,2019,34(24):3852−3854. doi: 10.3969/j.issn.1003-8914.2019.24.065
    [40]
    MAHMOUD M. SAMAHA, E S, HATEM A S. A comparative study of the role of crocin and sitagliptin in attenuation of STZ-induced diabetes mellitus and the associated inflammatory and apoptotic changes in pancreatic β-islets[J]. Environmental Toxicology and Pharmacology,2019,72:103238. doi: 10.1016/j.etap.2019.103238
    [41]
    杨鑫, 刘明辉, 马越娇, 等. 复方中药组分抗胰岛素抵抗糖尿病大鼠糖的过氧化作用[J]. 中国当代医药,2018,25(33):33−36. [YANG Xin, LIU Minghui, MA Yuejiao, et al. Anti-glucose peroxidation of the components of compound Chinese medicine against insulin resistance in diabetic rats[J]. China Contemporary Medicine,2018,25(33):33−36. doi: 10.3969/j.issn.1674-4721.2018.33.010

Catalog

    Article Metrics

    Article views (347) PDF downloads (66) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return