ZHANG Tingting, WANG Tiaolan, LI Yongcai. Inhibitory Effect of Seven Phenolic Compounds in Fruit Peel of Pingguoli Pear on Alternaria alternata in Vitro [J]. Science and Technology of Food Industry, 2022, 43(10): 165−173. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090014.
Citation: ZHANG Tingting, WANG Tiaolan, LI Yongcai. Inhibitory Effect of Seven Phenolic Compounds in Fruit Peel of Pingguoli Pear on Alternaria alternata in Vitro [J]. Science and Technology of Food Industry, 2022, 43(10): 165−173. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090014.

Inhibitory Effect of Seven Phenolic Compounds in Fruit Peel of Pingguoli Pear on Alternaria alternata in Vitro

More Information
  • Received Date: September 01, 2021
  • Available Online: March 18, 2022
  • In order to reveal the effect of main phenolic substances on the growth of black spot Alternaria alternata after fruit harvesting, and on the basis of the analysis of the content of Pingguoli pear peel phenolic substances during the development and storage period, this paper studied the effects of seven phenolic substances in the Pingguoli pear peel on the spore germination, mycelium growth, mycelium dry weight and melanin formation. The results showed that, in addition to arbutin, phenolic acids and flavonoids had a certain inhibitory effect on the germination of A. alternata, and there was a concentration dependence, and the inhibitory effect was phenolic acids> flavonoids> simple phenols, in turn. The inhibitory effect of ferulic acid was strong, and the spore germination, mycelial growth and dry weight of mycelium treated with 3 mg/mL ferulic acid were reduced by 98.5%, 29.4% and 22.2% respectively compared with the control (0 mg/mL). At the same time, the content of A. alternata melanin was increased in varying degrees after the treatment of seven phenolic substances. It can be seen that phenolic substances in Pingguoli pear peel have an important regulatory effect on the growth and pathogenicity of A. alternata.
  • loading
  • [1]
    YAN J, YUAN S, WANG C, et al. Enhanced resistance of jujube (Zizphus jujube Mill. cv. Dongzao) fruit against postharvest Alternaria rot by β-aminobutyric acid dipping[J]. Scientia Horticulturae,2015,186:108−114. doi: 10.1016/j.scienta.2015.02.018
    [2]
    HARTEVELD D O C, AKINSANMI O A, DULLAHIDE S, et al. Sources and seasonal dynamics of Alternaria inoculums associated with leaf blotch and fruit spot of apples[J]. Crop Protection,2014,59:35−42. doi: 10.1016/j.cropro.2014.01.011
    [3]
    SANZANI S M, REVERBERI M, GEISEN R. Mycotoxins in harvested fruits and vegetables: Insights in producing fungi, biological role, conducive conditions, and tools to manage postharvest contamination[J]. Postharvest Biology and Technology,2016,122:95−105. doi: 10.1016/j.postharvbio.2016.07.003
    [4]
    GRECO M, PATRIARCA A, TERMINIELLO L, et al. Toxigenic Alternaria species from Argentinean blueberries[J]. Food Microbiology,2012,154:187−191. doi: 10.1016/j.ijfoodmicro.2012.01.004
    [5]
    LI Y C, BI Y, AN L Z. Occurrence and latent infection of Alternaria rot of Pingguoli pear (Pyrus bretschneideri Rehd. cv. Pingguoli) fruits in Gansu, China[J]. Journal of Phytopathology,2007,155(1):56−60. doi: 10.1111/j.1439-0434.2006.01202.x
    [6]
    ESTIARTE N, CRESPO-SEMPERE A, MARIN S, et al. Exploring polyamine metabolism of Alternaria alternata to target new substances to control the fungal infection[J]. Food Microbiology,2017,65:193−204. doi: 10.1016/j.fm.2017.02.001
    [7]
    WANG Y, YU T, LI Y C, et al. Postharvest biocontrol of Alternaria alternata in Chinese winter jujube by Rhodosporidi paludigenum[J]. Applied Microbiology,2009,107:1492−1498. doi: 10.1111/j.1365-2672.2009.04330.x
    [8]
    PIZZOLITTO R P, BARBERIS C L, DAMBOLENA J S, et al. Inhibitory effect of natural phenolic compounds on Aspergillus parasitic growth[J]. Journal of Chemistry, 2016, 2015: 1-7.
    [9]
    İREM D, EKSI A. Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice[J]. Food Chemistry,2012,135(4):2910−2914. doi: 10.1016/j.foodchem.2012.07.032
    [10]
    WANG M, JIANG N, WANG Y, et al. Characterization of phenolic compounds from early and late ripening sweet cherries and their antioxidant and antifungal activities[J]. Food Chemistry,2017,65:5413−5420. doi: 10.1021/acs.jafc.7b01409
    [11]
    LEE M H, BOSTOCK R M. Induction, regulation and role in pathogenesis of appressoria in Monilinia fructicola[J]. Phytopathology,2006,96(10):1072−1080. doi: 10.1094/PHYTO-96-1072
    [12]
    LI W S, YUAN S Z, SUN J. Ethyl p-coumarate exerts antifungal activity in vitro and in vivo against fruit Alternaria alternata via membrane-targeted mechanism[J]. International Journal of Food Microbiology,2018,278:26−25. doi: 10.1016/j.ijfoodmicro.2018.04.024
    [13]
    LI W S, YUAN S Z, LI Q Q. Methyl p-coumarate inhibits black spot rot on jujube fruit through membrane damage and oxidative stress against Alternaria alternata[J]. Postharvest Biology and Technology, 2018, 145: 230–238.
    [14]
    DA ROCHA NETOA C, MARASCHIN M, PIERO R M D. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action[J]. International Journal of Food Microbiology, 2015, 215: 64–70.
    [15]
    PRUSKY D, ALKAN N, MENGISTE T, et al. Quiescent and necrotrophic lifestyle choice during postharvest disease development[C]. Annual Review of Phytopathology, 2013, 51: 155–176.
    [16]
    刘筱. 基于苹果梨果皮含量水平的酚类物质对Alternaria alternata侵染及胞外降解酶的调控[D]. 兰州: 甘肃农业大学, 2017.

    LIU X. Regulation of phenolic compounds based on concentration level in fruit peel of Pingguoli pear on pre-penetration process and extracellular degrading enzymes of Alternaria alternata[D]. Lanzhou: Gansu Agricultural University, 2017.
    [17]
    白雪娜, 卜亚春, 谷继成, 等. 伞形花内醋对植物病原真菌的抑制作用[J]. 植物保护,2012,38(2):42−45. [BAI X N, BU Y C, GU J C, et al. Antifungal activity of umbelliferone to plant pathogenic fungi[J]. Plant Protection,2012,38(2):42−45. doi: 10.3969/j.issn.0529-1542.2012.02.008

    BAI X N, BU Y C, GU J C, et al. Antifungal activity of umbelliferone to plant pathogenic fungi[J]. Plant Protection, 2012, 38(2): 42-45. doi: 10.3969/j.issn.0529-1542.2012.02.008
    [18]
    ANI V, VARADARAJ M, NAIDU K. Antioxidant and antibacterial activities of polyphenolic compounds from bitter cumin (Cuminum nigrum L.)[J]. European Food Review Technology,2006,224:109−115. doi: 10.1007/s00217-006-0295-z
    [19]
    PANE C, FRATIANNI F, PARISI M, et al. Control of Alternaria post-harvest infections on cherry tomato fruits by wild pepper phenolic-rich extracts[J]. Crop Protection,2016,84:81−87. doi: 10.1016/j.cropro.2016.02.015
    [20]
    BRUNETON J. Pharmacognosy, phytochemistry, medicinal plants intercept[M]. London Paris: New York, 1992.
    [21]
    MIGUEL ÁNGEL P, AGUSTÍN L, CRUZ S D L, et al. PCR-based assay for the detection of Alternaria species and correlation with HPLC determination of altenuene, alternariol and alternariol monomethyl ether production in tomato products[J]. Food Control,2012,25(1):1−52.
    [22]
    XU J, ZHOU F, JI B P, et al. The antibacterial mechanism of carvacrol and thymol against Escherichia coli[J]. Letters in Applied Microbiology,2008,47(3):174−179. doi: 10.1111/j.1472-765X.2008.02407.x
    [23]
    RAO A, ZHANG Y Q, MUEND S, et al. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway[J]. Antimicrobial Agents and Chemotherapy,2010,54(12):5062−5069. doi: 10.1128/AAC.01050-10
    [24]
    CEZAR D R N A, MARASCHIN M, DI PIERO R M. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action[J]. Food Microbiology,2015,215:64−70. doi: 10.1016/j.ijfoodmicro.2015.08.018
    [25]
    LANOUE A, BURLAT V, HENKES G J, et al. De novo biosynthesis of defense root exudates in response to Fusarium attack in barley[J]. New Phytologist,2010,185:577−588. doi: 10.1111/j.1469-8137.2009.03066.x
    [26]
    周真, 杜妍娴, 李希清. 黑色素与常见病原真菌致病性的关系[J]. 中国真菌学杂志,2011,6(6):373−376. [ZHOU Z, DU Y X, LI X Q. The relationship between melanin and common pathogenicity[J]. Chinese Journal of Mycology,2011,6(6):373−376. doi: 10.3969/j.issn.1673-3827.2011.06.016

    ZHOU Z, DU Y X, LI X Q. The relationship between melanin and common pathogenicity[J]. Chinese Journal of Mycology, 2011, 6(6): 373-376. doi: 10.3969/j.issn.1673-3827.2011.06.016
    [27]
    吴尧, 马爱民, 侣国涵, 等. 香灰菌黑色素的分离及抗氧化活性研究[J]. 天然药物研究与开发,2007,19(7):43−44. [WU Y, MA A M, LÜ G H, et al. Isolation and antioxidant activity of melanin pigment from Hypoxylon sp

    J]. Natural Product Research and Development,2007,19(7):43−44.
    [28]
    PIHET M, VANDEPUTTE P, TRONCHIN G, et al. Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia[J]. BMC Microbiology,2009,9:177. doi: 10.1186/1471-2180-9-177
    [29]
    CHAI L Y, NETEA M G, SUGUI J, et al. Aspergillus fumigatus conidial melanin modulates host cytokine response[J]. Immunobiology,2010,215(11):915−920. doi: 10.1016/j.imbio.2009.10.002
    [30]
    BUTLER M J, DAY A W, HENSON J M, et al. Pathogenic properties of fungal melanins[J]. Mycologia,2001,93:1−8. doi: 10.2307/3761599
    [31]
    YAGO J I, LIN C H, CHUNG K R. The SLT2 mitogen-activated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternata[J]. Molecular Plant Pathology,2011,12(7):653−665. doi: 10.1111/j.1364-3703.2010.00701.x
    [32]
    RITA DE CÁSSIA R G, POMBEIRO-SPONCHIADO S R. Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans[J]. Biological and Pharmaceutical Bulletin,2005,28(6):1129−1131. doi: 10.1248/bpb.28.1129

Catalog

    Article Metrics

    Article views (170) PDF downloads (19) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return