Citation: | DING Yue, HE Junfeng, GONG Ruofei, et al. pH Coupled Citric Acid Feeding Strategy to Promote Spore Production of Bacillus licheniformis[J]. Science and Technology of Food Industry, 2023, 44(2): 152−158. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030261. |
[1] |
焉兆萍, 宋士良, 陆克文. 地衣芽孢杆菌在畜牧生产中应用研究进展[J]. 中国饲料添加剂,2018(12):18−21. [YAN Z P, SONG S L, LU K W. Review on the application of Bacillus licheniformis in animal production[J]. China Feed Additive,2018(12):18−21.
|
[2] |
许慧, 丁健, 史仲平. 地衣芽孢杆菌BF-002高产芽孢的氮源流加工艺研究[J]. 中国生物工程杂志,2022,42(3):47−54. [XU H, DING J, SHI Z P. Research on a Fed-batch of nitrogen source fermentation process to improve the spores of Bacillus licheniformis BF-002[J]. China Biotechnology,2022,42(3):47−54.
|
[3] |
MURAS A, ROMRO M, MAYR C, et al. Biotechnological applications of Bacillus licheniformis[J]. Critical Reviews in Biotechnology,2021,41(4):609−627. doi: 10.1080/07388551.2021.1873239
|
[4] |
KURIBAYASHI L M, DO RIO RIBIRO V P, DE SANTANA R C, et al. Immobilization of β-galactosidase from Bacillus licheniformis for application in the dairy industry[J]. Applied Microbiology and Biotechnology,2021,105(9):3601−3610. doi: 10.1007/s00253-021-11325-8
|
[5] |
王鹏. 地衣芽孢杆菌强化对浓香型白酒酿造微生物群落结构和代谢的影响[D]. 无锡: 江南大学, 2017
WANG P. Effects of Bacillus licheniformis inoculation on the microbial community structure and metabolism during strong flavored liquor brewing process[D]. Wuxi: Jiangnan University, 2017.
|
[6] |
张小玲, 白小玲. 地衣芽孢杆菌联合双歧杆菌三联活菌治疗便秘型肠易激综合征效果观察[J]. 中国肛肠病杂志,2020,40(12):46−47. [ZHANG X L, BAI X L. Bacillus licheniformis combined with bifidobacterium tripletvaccine in the treatment of IBS of constipation type: Effect observation[J]. China J Coloproctol,2020,40(12):46−47. doi: 10.3969/j.issn.1000-1174.2020.12.021
|
[7] |
熊慧, 张雅婷, 羊晨, 等. 高效除磷菌的筛选与培养条件优化[J]. 环境科学与技术,2020,43(12):125−130. [XIONG H, ZHANG Y T, YANG C, et al. Screening and optimization of culture conditions of high efficient phosphorus removal organism[J]. Environmental Science & Technology,2020,43(12):125−130. doi: 10.19672/j.cnki.1003-6504.2020.12.017
|
[8] |
张红艳, 李忠玲, 张强, 等. 地衣芽孢杆菌MYS68的鉴定及发酵培养基优化[J]. 粮食与饲料工业,2018(2):50−53. [ZHANG H Y, LI Z L, ZHANG Q, et al. Identification and optimization of fermentation medium for Bacillus licheniformis MYS68[J]. Cereal & Fee Industry,2018(2):50−53.
|
[9] |
解顺昌, 刘扬科, 胡国春, 等. 地衣芽孢杆菌YTDY_01高产芽孢的培养基优化[J]. 生物技术世界,2015(10):1−3. [XIE C S, LIU Y K, HU G C, et al. Optimization of culture medium for high-yield spores of Bacillus licheniformis YTDY_01[J]. Biotech World,2015(10):1−3.
|
[10] |
赵国纬. 地衣芽孢杆菌L3发酵工艺优化及应用研究[D]. 武汉: 华中农业大学, 2009
ZHAO G W. Optimization of Bacillus licheniformis L3 fermentation optimization of Bacillus licheniformis L3 fermentation techniques and it's application research[D]. Wuhan: Huazhong Agricultural University, 2009.
|
[11] |
LIANG Q, LIU J, WEI J. The effect of Clostridium tyrobutyricum Spo0A
|
[12] |
余志强, 杨明明, 杨朝霞, 等. 同源重组法构建枯草杆菌spoOA基因缺失突变株[J]. 武汉大学学报·理学版,2004(2):229−233. [YU Z Q, YANG M M, YANG Z X, et al. The construction of Bacillus subtilis spoOA-Mutant by homologous recombination method[J]. J Wuhan Univ (Nat Sci Ed),2004(2):229−233.
|
[13] |
TAKKO K, KEIJI E, KATSUTOSHI A, et al. Effect of Bacillus subtilis spo0A mutation on cell wall lytic enzymes and extracellular proteases, and prevention of cell lysis[J]. Journal of Bioscience and Bioengineering,2007,103(1):13−21. doi: 10.1263/jbb.103.13
|
[14] |
焦晓阳. 调控蛋白AbrB对枯草芽孢杆菌B579芽孢生成影响的研究[D]. 天津: 天津科技大学, 2014
JIAO X Y. Research of effect of regulatory protein AbrB on the spore formation of Bacillus subtilis B579[D]. Tianjin: Tianjin University of Science and Technology, 2014.
|
[15] |
BODIK M, KRAJCIKOVA D, HAGARA J, et al. Diffraction pattern of Bacillus subtilis CotY spore coat protein 2D crystals[J]. Colloids and Surfaces B: Biointerfaces,2021,197:111425. doi: 10.1016/j.colsurfb.2020.111425
|
[16] |
HENRY S, JOSE A C, ADAM D. Diversity and evolutionary dynamics of spore-coat proteins in spore-forming species of Bacillales[J]. Microbial Genomics,2020,6(11):mgen000451.
|
[17] |
FREITAS C, PlANNIC J, ISTICATO R, et al. A protein phosphorylation module patterns the Bacillus subtilis spore outer coat[J]. Molecular Microbiology,2020,114(6):934−951. doi: 10.1111/mmi.14562
|
[18] |
JIANG Z, DONGBO C, HAIXIA X, et al. Enhancement of precursor amino acid supplies for improving bacitracin production by activation of branched chain amino acid transporter BrnQ and deletion of its regulator gene lrp in Bacillus licheniformis[J]. Synthetic and Systems Biotechnology,2018,3(4):236−243. doi: 10.1016/j.synbio.2018.10.009
|
[19] |
马蓉, 张立军, 丁锐, 等. 大肠杆菌氨基酸转运蛋白的研究进展[J]. 科技通报,2012,28(3):49−56. [MA R, ZHANG L J, DING R, et al. Research progress of amino acid transporter in Escherichia coli[J]. Bulletin of Science and Technology,2012,28(3):49−56. doi: 10.3969/j.issn.1001-7119.2012.03.010
|
[20] |
IMLAY J A. Where in the world do bacteria experience oxidative stress?[J]. Environmental Microbiology,2019,21(2):521−530. doi: 10.1111/1462-2920.14445
|
[21] |
El-KHOURY T, NGUYEN H, CANDUSSO M, et al. UbK is involved in the resistance of Bacillus subtilis to oxidative stress[J]. Current Microbiology,2020,77(12):4063−4071. doi: 10.1007/s00284-020-02239-1
|
[22] |
曾昕. 小白链霉菌同步代谢葡萄糖和甘油合成ε-聚赖氨酸的生理机制研究[D]. 无锡: 江南大学, 2016.
ZENG X. Physiological analysis of the ε-poly-L-lysine biosynthesis in Streptomyces albulus used glucose and glycerol as mixed carbon source[D]. Wuxi: Jiangnan University, 2016.
|
[23] |
李纾然, 谌翰林. 细菌氧化应激反应的研究进展[J]. 化工管理,2020(28):107−108. [LI S R, CHEN H L. Research progress of bacterial oxidative stress response[J]. Chemical Enterprise Management,2020(28):107−108. doi: 10.3969/j.issn.1008-4800.2020.28.052
|
[24] |
刘新星, 陈双喜, 储炬, 等. 柠檬酸钠对枯草杆菌生长代谢及肌苷积累的影响[J]. 微生物学报,2004(5):627−630. [LIU X X, CHEN S X, CHU J, et al. Effect of sodium citrate on the growth metabolism and inosine accumulation by Bacillus subtilis[J]. Acta Microbiological Sinica,2004(5):627−630. doi: 10.3321/j.issn:0001-6209.2004.05.016
|
[25] |
龚军辉, 王晶. 稀释涂布平板法计数活菌的方法简介[J]. 生物学教学,2018,43(2):70−71. [GONG J H, WANG J. Brief introduction of counting viable bacteria by dilution coating plate method[J]. Biology Teaching,2018,43(2):70−71. doi: 10.3969/j.issn.1004-7549.2018.02.036
|
[26] |
付维来, 杜建涛, 刘鹏, 等. 地衣芽孢杆菌M109高密度发酵条件的优化[J]. 中国畜牧兽医,2012,39(11):215−219. [FU W L, DU J T, LIU P, et al. Optimization of culture medium and fermentation conditions of Bacillus licheniformis M109[J]. China Animal Husbandry & Veterinary Medicine,2012,39(11):215−219. doi: 10.3969/j.issn.1671-7236.2012.11.050
|
[27] |
WON H I, WATSON S M, AHN J, et al. Inactivation of the Pta-AckA pathway impairs fitness of Bacillus anthracis during overflow metabolism[J]. Journal of Bacteriology,2021,203(9):e00660−20.
|
[28] |
PACZIA N, NILGEN A, LEHMANN T, et al. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms[J]. Microbial Cell Factories,2012,11(1):122. doi: 10.1186/1475-2859-11-122
|
[29] |
何俊杰, 宋光均, 邓慧萍, 等. 补料工艺对乳杆菌CHU-R产虾青素的影响[J]. 食品与发酵工业,2019,45(12):146−151. [HE J J, SONG G J, DENG H P, et al. Effects of fed process on astaxanthin production in Lactobacillus CHU-R[J]. Food and Fermentation Industries,2019,45(12):146−151.
|
[30] |
刘钊远. 增强地衣芽胞杆菌TCA循环代谢水平高产杆菌肽[D]. 武汉: 湖北大学, 2018
LIU Z Y. Enhance bacitracin production by in creasing the TCA cycle in Bacillus licheniformis[D]. Wuhan: HuBei University, 2018.
|
[31] |
蔡冬波. 地衣芽胞杆菌高产聚γ-谷氨酸的代谢调控及辅酶能量工程[D]. 武汉: 湖北大学, 2018
CAI D B. Metabolic regulation mechanism and cofactor energy engineering for high-level production of poly-γ-glutamic acid in Bacillus licheniformis[D]. Wuhan: Hubei University, 2018.
|
[32] |
王路平, 徐建中, 张伟国. 不同辅因子NADPH水平对谷氨酸棒杆菌生长及产物合成的影响[J]. 食品与生物技术学报,2021,40(4):44−57. [WANG L P, XU J P, ZHANAG G W. Different NADPH levels affected growth and metabolites accumulation in Corynebacterium glutamicum[J]. Journal of Food Science and Biotechnology,2021,40(4):44−57.
|
[33] |
HERBIG A F, HELMANN J D. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA[J]. Molecular Microbiology,2001,41(4):849−859.
|
[34] |
BSAT N, HERBIG A, CASILLAS-MARTINEZ L, et al. Bacillus subtilis contains multiple Fur homologues: Identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors[J]. Molecular Microbiology,1998,29(1):189−198. doi: 10.1046/j.1365-2958.1998.00921.x
|
[35] |
CHEN L, KERAMATI L, HELMANN J D. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions[J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92(18):8190−8194. doi: 10.1073/pnas.92.18.8190
|
[36] |
BSAT N, CHEN L, HELMANN J D. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes[J]. Journal of Bacteriology,1996,178(22):6579−6586. doi: 10.1128/jb.178.22.6579-6586.1996
|
[37] |
QIAN Q, LEE C Y, HELMANN J D, et al. AbrB is a regulator of the sigma (W) regulon in Bacillus subtilis[J]. FEMS Microbiology Letters,2002,211(2):219−223.
|
[38] |
STRAUCH M A, BOBAY B G, CAVANANGH J, et al. Abh and AbrB control of Bacillus subtilis antimicrobial gene expression[J]. Journal of Bacteriology,2007,189(21):7720−7732. doi: 10.1128/JB.01081-07
|