Citation: | ZHU Xiuqing, DENG Xiaoqi, ZHU Ying, et al. Advances in the Gel Preparation and Its Affecting Factors of Soybean Protein[J]. Science and Technology of Food Industry, 2023, 44(6): 405−414. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030372. |
[1] |
YAGHOUBI M, MOZANZADEH M T, MARAMMAZI J G, et al. Dietary replacement of fish meal by soy products(soybean meal and isolated soy protein) in silvery-black porgy juveniles (Sparidentex hasta)[J]. Aquaculture,2016(6):50−59.
|
[2] |
曾剑华, 杨杨, 刘琳琳, 等. 热处理过程中大豆11S球蛋白解离缔合行为研究进展[J]. 食品科学,2019,40(11):303−312. [ZENG J H, YANG Y, LIU L L, et al. Research progress on dissociation association behavior of soybean 11S globulin during heat treatment[J]. Food Science,2019,40(11):303−312. doi: 10.7506/spkx1002-6630-20180614-274
|
[3] |
SU Y, DONG Y, NIU F, et al. Study on the gel properties and secondary structure of soybean protein isolate/egg white composite gels[J]. European Food Research and Technology,2014(2):367−378.
|
[4] |
WAN Y, LIU J, GUO S, et al. Effects of succinylation on the structure and thermal aggregation of soy protein isolate[J]. Food Chemistry, 2018, 245: 542–550.
|
[5] |
WANG R, GUO S. Effects of endogenous small molecular compounds on the rheological properties, texture and microstructure of soymilk coagulum: Removal of phytate using ultrafiltration[J]. Food Chemistry, 2016, 211: 521–529.
|
[6] |
谭慧. 高压处理对大豆分离蛋白-多糖体系功能特性及结构影响研究[D]. 哈尔滨: 东北农业大学, 2015.
TAN H. Effect of high pressure treatment on functional characteristics and structure of soybean protein isolate-polysaccharide system[D]. Harbin: Northeast Agricultural University, 2015.
|
[7] |
TAHA A, AHMED E, HU T, et al. Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification[J]. Ultrasonics Sonochemistry,2019(58):104627.
|
[8] |
DICKINSON E. Food emulsions and foams: Stabilization by particles[J]. Current Opinion in Colloid and Interface Science,2010,15(1-2):40−49. doi: 10.1016/j.cocis.2009.11.001
|
[9] |
SCHREUDERS F K G, DEKKERS B L, BODNAR I, et al. Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation[J]. Journal of Food Engineering,2019,261:32−39.
|
[10] |
WANG R, LIU J, GUO S, et al. Binding of phytate to soybean protein during the heat treatment of soymilk and its effect on protein aggregation[J]. Food Hydrocolloids,2019,84:368−378.
|
[11] |
叶荣飞. 大豆分离蛋白凝胶性影响因素研究进展[J]. 畜牧与饲料科学,2009,30(1):29−30,32. [YE R F. Research progress on influencing factors of gelation of soy protein isolate[J]. Animal Husbandry and Feed Science,2009,30(1):29−30,32. doi: 10.3969/j.issn.1672-5190.2009.01.014
|
[12] |
蔡燕萍, 游寅寅, 刘建华等. 大豆蛋白凝胶性及其改良方法的研究进展[J]. 食品与发酵工业,2021,47(15):298−306. [CAI Y P, YOU Y Y, LIU J H, et al. Research progress on gelation of soybean protein and its improvement methods[J]. Food and Fermentation Industry,2021,47(15):298−306. doi: 10.13995/j.cnki.11-1802/ts.026766
|
[13] |
吴超. 大豆蛋白凝胶结构与非网络蛋白扩散行为或网络蛋白性质相关的研究[D]. 无锡: 江南大学, 2017.
WU C. Research on the gel structure of soy protein and non-network protein diffusion behavior or network protein properties[D]. Wuxi: Jiangnan University, 2017.
|
[14] |
谷雪莲, 孙冰玉, 刘琳琳等. 热处理及植酸与脂肪对豆浆中大豆蛋白凝胶体系的影响研究进展[J]. 食品科学,2022,43(3):333−340. [GU Xuelian, SUN Bingyu, LIU Linlin, et al. Advances in understanding the effects of heat treatment, phytic acid and fat on soy protein gel system in soybean milk[J]. Food Science,2022,43(3):333−340.
|
[15] |
何秀婷. 大豆7S蛋白热聚集体的形成及其性质研究[D]. 广州: 华南理工大学, 2015.
HE X T, Formation and properties of soybean 7S protein thermal aggregates[D]. Guangzhou: South China University of Technology, 2015.
|
[16] |
杨岚, 成玉梁, 郭亚辉, 等. 热处理强度对大豆分离蛋白凝胶形成能力的影响[J]. 大豆科学,2018,37(1):141−148. [YANG L, LIANG Y C, GUO Y H, et al. Effect of heat treatment intensity on gel formation ability of soybean protein isolate[J]. Soybean Science,2018,37(1):141−148.
|
[17] |
WAN Y L, LI Y, GUO S Y. Characteristics of soy protein isolate gel induced by glucono-δ-lactone: Effects of the protein concentration during preheating[J]. Food Hydrocolloids,2021(113):106525.
|
[18] |
ZHENG T, LI X H, AHMED T, et al. Effect of high intensity ultrasound on the structure and physicochemical properties of soy protein isolates produced by different denaturation methods[J]. Food Hydrocolloids,2019(97):105216.
|
[19] |
TANG C H, WANG C S, HUANG Q. Improvement of heat-induced fibril assembly of soy β-congly-cinin (7S globulins) at pH 2.0 through electrostatic screening[J]. Food Research Internation-al,2012,46(1):229−236. doi: 10.1016/j.foodres.2011.11.030
|
[20] |
金郁葱. 大豆蛋白凝胶结构和质构的控制研究[D]. 广州: 华南理工大学, 2013.
JIN Y H. Study on the control of gel structure and texture of soybean protein[D]. Guangzhou: South China University of Technology, 2013.
|
[21] |
牛祥臣, 王洪彩, 马军, 等. 食盐浓度和热处理条件对大豆蛋白凝胶特性影响的研究[J]. 食品研究与开发,2018,39(6):19−22. [NIU X C, WANG H C, MA J, et al. Effects of salt concentration and heat treatment conditions on gel properties of soybean protein[J]. Food Research and Development,2018,39(6):19−22. doi: 10.3969/j.issn.1005-6521.2018.06.004
|
[22] |
李云. 大豆蛋白聚集及共混凝胶性质研究[D] . 无锡: 江南大学, 2007.
LI Y. Study on soybean protein aggregation and gel properties of blend[D]. Wuxi: Jiangnan University, 2007.
|
[23] |
YANG Y F, HE S D, YE Y K, et al. Enhanced hydrophobicity of soybean protein isolate by low-pH shifting treatment for the sub-micron gel particles preparation[J]. Industrial Crops & Products,2020,151:112475.
|
[24] |
MERCADE-PRIETO R, ZHAO H, ZHANG M, et al. Dissolution and swelling of soy protein isolate hydrogels in alkali[J]. Food Hydrocolloids,2016,56:285−291. doi: 10.1016/j.foodhyd.2015.12.014
|
[25] |
王洪晶. 脂肪氧合酶对大豆分离蛋白聚集及凝胶性质影响研究[D]. 无锡: 江南大学, 2006.
WANG H J. Effect of lipoxygenase on aggregation and gel properties of soybean protein isolates[D]. Wuxi: Jiangnan University, 2006.
|
[26] |
郝建敏. 加工技术对豆乳蛋白质特性的影响研究及产品评价[D]. 哈尔滨: 东北农业大学, 2016.
HAO J M. Effect of processing technology on soymilk protein properties and product evaluation[D]. Harbin: Northeast Agricultural University, 2016.
|
[27] |
李丹, 魏东旭, 贾烨, 等. 大豆7S球蛋白结构特性与表面疏水性相关性研究[J]. 中国油脂,2017,42(4):93−98. [LI D, WEI D X, JIA Y, et al. Study on the correlation between structure characteristics and surface hydrophobicity of soybean 7S globulin[J]. China Oils and Fats,2017,42(4):93−98. doi: 10.3969/j.issn.1003-7969.2017.04.021
|
[28] |
FU H, LI J, YANG X, et al. The heated-induced gelation of soy protein isolate at subunit level: Exploring the impacts of α and α′ subunits on SPI gelation based on natural hybrid breeding varieties[J]. Food Hydrocolloids,2023,134:108008.
|
[29] |
TARONE A G, FASOLIN L H, PERRECHIL F A, et al. Influence of drying conditions on the gelling properties of the 7S and 11S soy protein fractions[J]. Food and Bioproducts Processing,2013,91:111−120. doi: 10.1016/j.fbp.2012.11.010
|
[30] |
YAMAUCHI F, KAMATA Y, SHIBASAKI K. Isolation and identification of a new type of β-conglycinin in soybean globulins[J]. Agricultural and Biological Chemistry,1981,45(12):2863−2868.
|
[31] |
THANH V H, SHIBASAKI K. Major proteins of soybean seeds. Reconstitution of β-conglycinin from its subunits[J]. Journal of Agricultural & Food Chemistry,1978,26(3):695−698.
|
[32] |
袁德保. 大豆蛋白热聚集行为及其机理研究[D]. 广州: 华南理工大学, 2010.
YUAN D B. Study on thermal aggregation behavior and mechanism of soy protein[D]. Guangzhou: South China University of Technology, 2010.
|
[33] |
MOHAMAD RAMLAN B M S, MARUYAMA N, TAKAHASHI K, et al. Gelling properties of soybean β-conglycinin having different subunit compositions[J]. Bioscience Biotechnology and Biochemistry,2004(7):1091−1096.
|
[34] |
MARUYAMA Y, MARUYAMA N, MIKAMI B, et al. Structure of the core region of the soybean β-conglycinin α′ subunit[J]. Acta Crystallographica Section D:Biological Crystallography,2004,60(2):289−297. doi: 10.1107/S0907444903027367
|
[35] |
STASWICK P, HERMODSON M, NIELSEN N. Identification of the cystines which link the acidic and basic components of the glycinin subunits[J]. Journal of Biological Chemistry,1984,259(21):13431−13435. doi: 10.1016/S0021-9258(18)90712-X
|
[36] |
UTSUMI S, KINSELLA J E. Structure-function relationships in food proteins: Subunit interactions in heat-induced gelation of 7S, 11S, and soy isolate proteins[J]. Journal of Agricultural and Food Chemistry,1985,33(2):297−303. doi: 10.1021/jf00062a035
|
[37] |
NAKAMURA T, UTSUMI S, MORI T. Network structure formation in thermally induced gelation of glycinin[J]. Journal of Agricultural and Food Chemistry,1984,32(2):349−352. doi: 10.1021/jf00122a042
|
[38] |
ANDREW T. J, YANG A J. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties[J]. Food Chemistry,2016,194:284−289. doi: 10.1016/j.foodchem.2015.08.021
|
[39] |
YANG A, YU X, ZHENG A, et al. Rebalance between 7S and 11S globulins in soybean seeds of differing protein content and 11SA4[J]. Food Chemistry,2016,210:148−155. doi: 10.1016/j.foodchem.2016.04.095
|
[40] |
BAINY E M, TOSH S M, CORREDIG M, et al. Protein subunit composition effects on the thermal denaturation at different stages during the soy protein isolate processing and gelation profiles of soy protein isolates[J]. Journal of the American Oil Chemists Society,2008,85(6):581−590. doi: 10.1007/s11746-008-1238-6
|
[41] |
TEZUKA M, YAGASAKI K, ONO T. Changes in characters of soybean glycinin groups I, IIa, and IIb caused by heating[J]. Journal of Agricultural and Food Chemistry,2004,52(6):1693−1699. doi: 10.1021/jf030353s
|
[42] |
JI M P, CAI T D, CHANG K C. Tofu yield and textural properties from three soybean cultivars as affected by ratios of 7S and 11S proteins[J]. Journal of Food Science,1999,64(5):763−767. doi: 10.1111/j.1365-2621.1999.tb15907.x
|
[43] |
MENG S, CHANG S, GILLEN A M, et al. Protein and quality analyses of accessions from the usda soybean germplasm collection for tofu production[J]. Food Chemistry,2016,213:31−39. doi: 10.1016/j.foodchem.2016.06.046
|
[44] |
NIU H, XIA X, WANG C, et al. Thermal stability and gel quality of myofibrillar protein as affected by soy prote in isolates subjected to an acidic pH and mild heating[J]. Food Chemistry,2018,242:188−195. doi: 10.1016/j.foodchem.2017.09.055
|
[45] |
POYSA V, WOODROW L, YU K. Effect of soy protein subunit composition on tofu quality[J]. Food Research International,2006,39(3):309−317. doi: 10.1016/j.foodres.2005.08.003
|
[46] |
JACOBA M S R, CATRIONA M M L, HARMEN H J D J, et al. The effect of pH on heat denaturation and gel forming properties of soy proteins[J]. Journal of Biotechnology,2000,79(3):223−230. doi: 10.1016/S0168-1656(00)00239-X
|
[47] |
HE X T, YUAN D B, WANG J M, et al. Thermal aggregation behaviour of soy protein: Characteristics of different polypeptides and subunits[J]. Journal of the Science of Food and Agriculture,2016,96(4):1121−1131. doi: 10.1002/jsfa.7184
|
[48] |
ELISE R, MARCELA A, MILENA C, et al. Effect of concentration and incubation temperature on the acid induced aggregation of soymilk[J]. Food Hydrocolloids,2013,30(1):463−469. doi: 10.1016/j.foodhyd.2012.05.011
|
[49] |
TIAN Y, TAHA A, ZHANG P P, et al. Effects of protein concentration, pH, and NaCl concentration on the physicochemical, interfacial, and emulsifying properties of β-conglycinin[J]. Food Hydrocolloids,2021,118:106784. doi: 10.1016/j.foodhyd.2021.106784
|
[50] |
刘德阳. 盐离子对大豆分离蛋白凝胶特性和微结构影响研究[D]. 无锡: 江南大学, 2015: 2−18.
LIU D Y. Effects of salt ions on gel properties and microstructure of soybean protein isolate [D]. Wuxi: Jiangnan University, 2015: 2−18.
|
[51] |
CHEN Z, SHI X, XU J, et al. Gel properties of SPI modified by enzymatic cross-linking during frozen storage[J]. Food Hydrocolloids,2016(56):445−452.
|
[52] |
王逢秋节, 杨鑫鑫, 谷雪莲, 等. 转谷氨酰胺酶-氯化镁协同诱导对冷榨豆粉凝胶的影响[J/OL]. 食品科学: 1−12[2022-08-07].http://kns.cnki.net/kcms/detail/11.2206.ts.20210927.2302.022.html
WANG F Q J, YANG X X, GU X L, et al. Effect of synergistic induction of transglutaminase and magnesium chloride on cold-pressed soy flour gel[J/OL]. Food Science: 1−12[2022-08-07]. http://kns.cnki.net/kcms/detail/11.2206.ts.20210927.2302.022.html.
|
[53] |
CHEN N N, ZHAO M M, CHASSENIEUX C, et al. The effect of adding NaCl on thermal aggregation and gelation of soy protein isolate[J]. Food Hydrocolloids,2017(70):88−95.
|
[54] |
GENG M J, LIU J, HU H, et al. A comprehensive study on structures and characterizations of 7S protein treated by high intensity ultrasound at different pH and ionic strengths[J]. Food Chemistry,2022,373:131378. doi: 10.1016/j.foodchem.2021.131378
|
[55] |
NGUYEN P T M, KRAVCHUK O, BHANDARI B, et al. Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt[J]. Food Hydrocolloids,2017(72):90−104.
|
[56] |
NINGTYAS D W, TAM B, BHANDARI B, et al. Effect of different types and concentra-tions of fat on the physico-chemical properties of soy protein isolate gel[J]. Food Hydrocolloids,2021,111:106226. doi: 10.1016/j.foodhyd.2020.106226
|
[57] |
李菊芳. 磷脂-大豆蛋白复合物形成机理及其理化功能特性研究[D]. 北京: 中国农业大学, 2014.
LI J F. The formation mechanism and physicochemical properties of phospholipid-soybean protein complexes[D]. Beijing: China Agricultural University, 2014.
|
[58] |
ZHAO H, CHEN J, HEMAR Y, et al. Improvement of the rheological and textural properties of calcium sulfate-induced soy protein isolate gels by the incorporation of different polysaccharides[J]. Food Chemistry,2020(310):125983.
|
[59] |
WANG W, SHEN M, JIANG L, et al. Influence of mesona blumes polysaccharide on the gel properties and microstructure of acid-induced soy protein isolate gels[J]. Food Chemistry,2020(313):126125.
|
[60] |
LAKSHMANAN R, DE LAMBALLERIE M, JUNG S. Effect of soybean-to-water ratio and pH on pressurized soymilk properties[J]. Journal of Food Science,2006,71(9):384−391. doi: 10.1111/j.1750-3841.2006.00198.x
|
[61] |
NIK A M, TOSH S. M, WOODROW L, et al. Effect of soy protein subunit composition and processing conditions on stability and particle size distribution of soymilk[J]. LWT-Food Science and Technology,2009,42(7):1245−1252. doi: 10.1016/j.lwt.2009.03.001
|
[62] |
NAGANO T, MORI H, NISHINARI K. Effect of heating and cooling on the gelation kinetics of 7S globulin from soybeans[J]. Journal of Agricultural and Food Chemistry,1994,42(7):1415−1419. doi: 10.1021/jf00043a005
|
[63] |
RENKEMA J M, GRUPPEN H, VAN V T. Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions[J]. Journal of Agricultural and Food Chemistry,2002,50(21):6064−6071. doi: 10.1021/jf020061b
|
[64] |
WU C, MA W, HUA Y. The relationship between breaking force and hydrophobic interactions or disulfide bonds involved in heat-induced soy protein gels as affected by heating time and temperature[J]. International Journal of Food Science & Technology,2019,54(1):231−239.
|
[65] |
HU H, CHEUNG I W Y, PAN S, et al. Effect of high intensity ultrasound on physicochemical and functional properties of aggrega ted soybean β-conglycinin and glycinin[J]. Food Hydrocolloids,2015(45):102−110.
|
[66] |
王小英, 李娜. 超声处理对大豆蛋白溶解性及蛋白组分的影响[J]. 中国油脂,2009,34(4):31−34. [WANG X Y, LI N. Effect of ultrasonic treatment on solubility and protein components of soybean protein[J]. China Oils and Fats,2009,34(4):31−34. doi: 10.3321/j.issn:1003-7969.2009.04.009
|
[67] |
ZHAO C B, YIN H H, YAN J N, et al. Structure and acid-induced gelation properties of soy protein isolate–maltodextrin glycation conjugates with ultrasonic pretreatment[J]. Food Hydrocolloids,2021(112):106278.
|
[68] |
TIAN R, FENG J R, HUANG G, et al. Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates[J]. Ultrasonics Sonochemistry,2022,68:105202.
|
[69] |
HUANG L R, DING X N, LI Y L, et al. The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid[J]. Food Chemistry,2019,279:114−116. doi: 10.1016/j.foodchem.2018.11.147
|
[70] |
OGEMDI F. E, AFRODITI C, DIMITRIS C. Properties of protein isolates extracted by ultrasonication from soybean residue (okara)[J]. Food Chemisty,2022,368:130837. doi: 10.1016/j.foodchem.2021.130837
|
[71] |
刘冉, 曾庆华, 王振宇, 等. 超声波处理对大豆分离蛋白凝胶流变性和凝胶形成的影响[J]. 食品工业科技,2020,41(21):87−92,98. [LIU R, ZENG Q H, WANG Z Y, et al. Effect of ultrasonic treatment on gel rheology and gel formation of soybean protein isolate[J]. Science and Technology of Food Industry,2020,41(21):87−92,98. doi: 10.13386/j.issn1002-0306.2020020155
|
[72] |
吕博, 李明达, 张毅方, 等. 低压均质处理对大豆分离蛋白凝胶特性的影响[J]. 食品工业,2019,40(2):168−172. [LV B, LI M D, ZHANG Y F, et al. Effect of low pressure homogenization on gel properties of soybean protein isolate[J]. Food Industry,2019,40(2):168−172.
|
[73] |
WANG X S, TANG C H, LI B S, et al. Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates[J]. Food Hydrocolloids,2008,22(4):560−567. doi: 10.1016/j.foodhyd.2007.01.027
|
[74] |
KANG Z L, BAI R, LU F, et al. Effects of high pressure homogenization on the solubility, foaming, and gel properties of soy 11S globulin[J]. Food Hydrocolloids,2022,124(A):107261.
|
[75] |
BI C H, WANG P L, SUN D Y, et al. Effect of high-pressure homogenization on gelling and rheological properties of soybean protein isolate emulsion gel[J]. Journal of Food Engineering,2020,227:109923.
|
[76] |
朱秀清, 刘燕清, 朱颖等. 挤压预处理酶解修饰大豆蛋白乳化特性的研究进展[J]. 食品科学,2021,42(21):365−371. [ZHU X Q, LIU Y Q, ZHU Y, et al. Advances in emulsifying properties of soy protein modified by extrusion pretreatment[J]. Food Science,2021,42(21):365−371. doi: 10.7506/spkx1002-6630-20200819-245
|
[77] |
SILVA A C C, ARÊAS E P G, SILVA M A, et al. Effects of extrusion on the emulsifying properties of rumen and soy protein[J]. Food Biophysics,2010,5(2):94−102. doi: 10.1007/s11483-010-9149-0
|
[78] |
FANG Y Q, ZHANG B, WEI Y M. Effects of the specific mechanical energy on the physicochemical properties of texturized soy protein during high-moisture extrusion cooking[J]. Journal of Food Engineering,2014(121):32−38.
|
[79] |
ZHENG H, YAN G, LEE Y, et al. Effect of the extrusion process on allergen reduction and the texture change of soybean protein isolatecorn and soybean flour-corn mixtures[J]. Innovative Food Science and Emerging Technologies,2020,64:102421. doi: 10.1016/j.ifset.2020.102421
|
[80] |
MA W, QI B, SAMI R, et al. Conformational and functional properties of soybean proteins produced by extrusion-hydrolysis approach[J]. International Journal of Analytical Chemistry,2018,2018:9182508.
|
[81] |
LIU Y Q, HUANG Y Y, DENG X Q, et al. Effect of enzymatic hydrolysis followed after extrusion pretreatment on the structure and emulsibility of soybean protein[J]. Process Biochemistry,2022,116:173−184. doi: 10.1016/j.procbio.2022.03.012
|
[82] |
DINAKAR P, ARUN K. Enhancing the functionality of food proteins by enzymatic modification[J]. Trends in Food Science & Technology, 1996, 7(4).
|
[83] |
孙菁, 赵良忠, 王容, 等. 基于TG酶凝固的大豆蛋白凝胶生产工艺研究[J]. 农产品加工,2019(14):28−32,42. [SUN J, ZHAO L Z, WANG R, et al. Production technology of soybean protein gel based on tg enzymatic solidification[J]. Agricultural Product Processing,2019(14):28−32,42. doi: 10.16693/j.cnki.1671-9646(X).2019.07.042
|
[84] |
丁欣悦. 超声辅助转谷氨酰胺酶及美拉德反应对大豆分离蛋白结构和功能性质的影响[D]. 南昌: 南昌大学, 2018: 1−10.
DING X Y. Effect of ultrasound-assisted transglutaminase and Maillard reaction on the structure and functional properties of soybean protein isolate[D]. Nanchang: Nanchang University, 2018: 1−10.
|
[85] |
FATIMA S W, KHARE S K. Current insight and futuristic vistas of microbial transglutaminase in nutraceutical industry[J]. Microbiological Research,2018:215.
|
[86] |
LUISA A, GASPAR C, DE G F S P. Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review[J]. Food Chemistry,2015,171(Mar.15):315−322.
|
[87] |
QIN X S, CHEN S S, LI X J, et al. Gelation Properties of transglutaminase-induced soy protein isolate and wheat gluten mixture with ultrahigh pressure pretreatment[J]. Food and Bioprocess Technology,2017,10(5):866−874. doi: 10.1007/s11947-017-1864-9
|
[88] |
ZHANG M Q, YANG Y J, NURIA C. A, et al. Effects of pre-heating soybean protein isolate and transglutaminase treatments on the properties of egg-soybean protein isolate composite gels[J]. Food Chemistry,2020,318:126421. doi: 10.1016/j.foodchem.2020.126421
|
[89] |
LUO K Y, LIU S T, MIAO S, et al. Effects of transglutaminase pre-crosslinking on salt-induced gelation of soy protein isolate emulsion[J]. Journal of Food Engineering,2019,263:280−287. doi: 10.1016/j.jfoodeng.2019.07.008
|
[90] |
赵新淮, 侯瑶. 大豆蛋白限制性酶解模式与产品胶凝性的相关性[J]. 农业工程学报,2009,25(S1):217−221. [ZHAO X H, HOU Y. The correlation between soybean protein restrictive enzymatic hydrolysis mode and product gelation[J]. Transactions of the Chinese Society of Agricultural Engineering,2009,25(S1):217−221.
|
[91] |
余留印. 大豆蛋白酶解物的氨基葡萄糖糖基化修饰及其性质研究[D]. 郑州: 河南农业大学, 2019: 1−15.
YU L Y. Glucosylation modification and properties of soybean protein hydrolysates[D]. Zhengzhou: Henan Agricultural University, 2019: 1−15.
|
[92] |
YANG X, KE C, LI L. Physicochemical, rheological and digestive characteristics of soy protein isolate gel induced by lactic acid bacteria[J]. Journal of Food Engineering,2021,292:110243. doi: 10.1016/j.jfoodeng.2020.110243
|
[93] |
李良, 杨晓宇, 王雁, 等. 植物乳杆菌发酵大豆分离蛋白凝胶的特性分析[J]. 华南理工大学学报(自然科学版),2019,47(3):93−100. [LI L, YANG X Y, WANG Y, et al. Characterization of soy protein isolate gel fermented by Lactobacillus plantarum[J]. Journal of South China University of Technology (Natural Science),2019,47(3):93−100.
|