Citation: |
GAO Yuqing, ZHANG Haojie, ZHANG Danfeng, et al. Construction of A High-efficiency Homologous Recombination and Uridine/Uracil Auxotroph Strain |
[1] |
刘丽萍, 刘丽华. 米曲霉研究进展与应用[J]. 中国调味品,2008(4):28−32. [LIU L P, LIU L H. Study and application of Aspergillus oryzae indifferent domains[J]. China Condiment,2008(4):28−32. doi: 10.3969/j.issn.1000-9973.2008.04.003
|
[2] |
马萍苹, 鄢莉, 张佳兰. 米曲霉液态发酵香菇残次品产蛋白酶条件优化[J]. 中国酿造,2019,40(9):211−215. [MA P P, YAN L, ZHANG J L. Optimization of liquid state fermentation conditions for production protease with Lentinus edodes residues by Aspergillus oryzae[J]. China Brewing,2019,40(9):211−215.
|
[3] |
罗雯, 郭建, 樊君, 等. 酱油酿造中复合米曲霉发酵制曲研究[J]. 中国调味品,2022,47(4):164−166. [LUO W, GUO J, FAN J, et al. Study on koji making by fermentation of compound Aspergillus oryzae in brewing of soy sauce[J]. China Condiment,2022,47(4):164−166. doi: 10.3969/j.issn.1000-9973.2022.04.031
|
[4] |
阮露晨. 无痕敲除构建米曲霉尿嘧啶营养缺陷型菌株[D]. 天津: 天津科技大学, 2020
RUAN L C. Construction of Aspergillus oryzae uracil auxotrophy strain by seamless knockout[D]. Tianjin: Tianjin University of Science and Technology, 2020.
|
[5] |
MACHIDA M, ASAI K, SANO M, et al. Genome sequencing and analysis of Aspergillus oryzae[J]. Nature,2005,438(7071):1157−1161. doi: 10.1038/nature04300
|
[6] |
ZHAO G Z, YAO Y P, QI W, et al. Draft genome sequence of Aspergillus oryzae strain 3.042[J]. Eukaryotic Cell,2012,11(9):1178. doi: 10.1128/EC.00160-12
|
[7] |
ZHAO G Z, YAO Y P, WANG C L, et al. Comparative genomic analysis of Aspergillus oryzae strains 3.042 and RIB40 for soy sauce fermentation[J]. International Journal of Food Microbiology,2013,164(2-3):148−154. doi: 10.1016/j.ijfoodmicro.2013.03.027
|
[8] |
ZHAO G Z, YAO Y P, CHEN W, et al. Comparison and analysis of the genomes of two Aspergillus oryzae strains[J]. Journal of Agricultural and Food Chemistry,2013,61(32):7805−7809. doi: 10.1021/jf400080g
|
[9] |
侯丽华, 卢嵩, 王檬, 等. 低盐固态工艺条件下米曲霉3.042和米曲霉RIB40酿造酱油发酵性能的比较[J]. 中国调味品,2014,39(8):1−8. [HOU L H, LU S, WANG M, et al. Comparison of fermentation performance between A. oryzae 3.042 and A. oryzae RIB40 in low-salt solid-state fermentation of soy sauce[J]. China Condiment,2014,39(8):1−8. doi: 10.3969/j.issn.1000-9973.2014.08.001
|
[10] |
王莹. 米曲霉RIB40和3.042在酱油酿造中发酵性能的对比[D]. 天津: 天津科技大学, 2014
WANG Y. Fermentation performance comparison of Aspergillus oryzae RIB40 and 3.042 in soy sauce[D]. Tianjin: Tianjin University of Science and Technology, 2014.
|
[11] |
SUN Y, NIU Y, HE B, et al. A dual selection marker transformation system using Agrobacterium tumefaciens for the industrial Aspergillus oryzae 3.042[J]. Workld Journal of Microbiolgy and Biotechnology,2019,29(2):230−234. doi: 10.4014/jmb.1811.11027
|
[12] |
毕付提, 史亚楠, 张久祎, 等. 米曲霉3.042尿苷/尿嘧啶营养缺陷型遗传转化体系的构建[J]. 食品研究与开发,2021,42(3):189−195. [BI F T, SHI Y N, ZHANG J Y, et al. Construction of Aspergillus oryzae 3.042 uridine/uracil auxotrophy genetic transformation system[J]. Food Research and Development,2021,42(3):189−195. doi: 10.12161/j.issn.1005-6521.2021.03.031
|
[13] |
刘雪. 米曲霉原生质体的制备及pyrG缺失株的构建研究[D]. 南昌: 南昌大学, 2012
LIU X. Study on preparation of protoplast and construction of pyrG disruption strains in Aspergillus oryzae[D]. Nanchang: Nanchang University, 2012.
|
[14] |
WELD R J, PLUMMER K M, CARPENTER M A, et al. Approaches to functional genomics in filamentous fungi[J]. Cell Research,2006,16(1):31−44. doi: 10.1038/sj.cr.7310006
|
[15] |
ZHANG F, XU G, GENG L, et al. The stress response regulator AflSkn7 influences morphological development, stress response, and pathogenicity in the fungus Aspergillus flavus[J]. Toxins (Basel),2016,8(7):202. doi: 10.3390/toxins8070202
|
[16] |
EDYTA S, TANIA N, ELIZABETH O C, et al. Fusion PCR and gene targeting in Aspergillus nidulans[J]. Nature Protocols,2006,1(6):3111−3120. doi: 10.1038/nprot.2006.405
|
[17] |
于潇淳. 表达蛋白酶的米曲霉工程菌构建及发酵特性研究[D]. 沈阳: 沈阳农业大学, 2018
YU X C. Study on the construction of engineered Aspergillus oryzae for expressing proteases and their effect on the fermentation[D]. Shenyang: Shenyang Agricultural University, 2018.
|
[18] |
CHEEVADHANARAK S, SAUNDERS G, RENNO D, et al. Transformation of Aspergillus oryzae with a dominant selectable marker[J]. Journal of Biotechnology,1991,19(1):117−122. doi: 10.1016/0168-1656(91)90079-B
|
[19] |
KUBODERA T, YAMASHITA N, NISHIMURA A. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: Cloning, characterization and application as a dominant selectable marker for transformation[J]. Bioscience, Biotechnology, and Biochemistry,2000,64(7):1416−1421. doi: 10.1271/bbb.64.1416
|
[20] |
SHIMA Y, ITO Y, HATABAYASHI H, et al. Five carboxin-resistant mutants exhibited various responses to carboxin and related fungicides[J]. Bioscience, Biotechnology, and Biochemistry,2011,75(1):181−184. doi: 10.1271/bbb.100687
|
[21] |
卢园萍, 肖婷婷, 尚俊军, 等. 双孢蘑菇萎锈灵抗性基因定点突变的载体构建与遗传转化[J]. 菌物学报,2021,40(12):3256−3264. [LU Y P, XIAO T T, SHANG J J, et al. Construction of a vector containing a point-mutated carboxin-resistance gene and genetic transformation of Agaricus bisporus[J]. Mycosystema,2021,40(12):3256−3264. doi: 10.13346/j.mycosystema.210347
|
[22] |
ORTEGA-ESCALANTE J A, KWOK O, MILLER S M. New selectable markers for Volvox carteri transformation[J]. Protist,2019,170(1):52−63. doi: 10.1016/j.protis.2018.11.002
|
[23] |
PUNT P J, OLIVER R P, DINGEMANSE M A, et al. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli[J]. Gene,1987,56(1):117−124. doi: 10.1016/0378-1119(87)90164-8
|
[24] |
吴琴琴, 孙敏, 陈雨, 等. 米曲霉功能基因组研究策略和进展[J]. 生物技术通报,2019,35(8):186−192. [WU Q Q, SUN M, CHEN Y, et al. Strategies and advances in functional genomics of Aspergillus oryzae[J]. Biotechnology Bulletin,2019,35(8):186−192. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0226
|
[25] |
BINH C T, THAI H D, HA B T V, et al. Establishment of a new and efficient Agrobacterium-mediated transformation system in the nematicidal fungus Purpureocillium lilacinum[J]. Microbiol Res,2021,249:126773. doi: 10.1016/j.micres.2021.126773
|
[26] |
李娟, 邱睿, 张盈盈, 等. 根癌农杆菌介导的尖孢镰刀菌遗传转化体系构建[J]. 中国烟草学报,2022:1−10. [LI J, QIU R, ZHANG Y Y, et al. Construction of agrobacterium tumefaciens-mediated genetic transformation system of tobacco Fusarium oxysporum[J]. Acta Tabacaria Sinica,2022:1−10.
|
[27] |
曹旸. 谢瓦氏曲霉间型变种 ∆ku70 菌株的构建及功能分析[D]. 武汉: 华中农业大学, 2013
CAO Y. Construction and study of ∆ku70 strain in Aspergillus chevalieri var. Intermedius[D]. Wuhan: Huazhong Agricultural University, 2013.
|
[28] |
李达, 沈雪莲, 李少华, 等. Ku70基因稳定敲除HeLa株的建立及其生物学功能研究[J]. 生物技术通讯,2018,29(2):155−161. [LI D, SHEN X L, LI S H, et al. Establishment and biological function of Ku70 gene stably knockout HeLa cell lines[J]. Letters in Biotechnology,2018,29(2):155−161. doi: 10.3969/j.issn.1009-0002.2018.02.001
|
[29] |
NINOMIYA Y, SUZUKI K, ISHII C, et al. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining[J]. Proceedings of the National Academy of Sciences,2004,101(33):12248−12253. doi: 10.1073/pnas.0402780101
|
[30] |
JIN H, LEE B, LUO Y, et al. FOXL2 directs DNA double-strand break repair pathways by differentially interacting with Ku[J]. Nat Commun,2020,11(1):2010. doi: 10.1038/s41467-020-15748-1
|
[31] |
KOH C M J, LIU Y, MOEHNINSI, et al. Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides[J]. BMC Microbiology,2014,14(1):50. doi: 10.1186/1471-2180-14-50
|
[32] |
TU J L, BAI X Y, XU Y L, et al. Targeted gene insertion and replacement in the basidiomycete Ganoderma lucidum by inactivation of non-homologous end joining using CRISPR/Cas9[J]. Applied and Environmental Microbiology,2021,87(23):1510−1521.
|