MA Guanhua, JIANG Siqi, ZHANG Jingsong, et al. Research Progress on Preparation, Structure Identification and Bioactivity of β-Glucooligosaccharides[J]. Science and Technology of Food Industry, 2023, 44(8): 429−436. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050169.
Citation: MA Guanhua, JIANG Siqi, ZHANG Jingsong, et al. Research Progress on Preparation, Structure Identification and Bioactivity of β-Glucooligosaccharides[J]. Science and Technology of Food Industry, 2023, 44(8): 429−436. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050169.

Research Progress on Preparation, Structure Identification and Bioactivity of β-Glucooligosaccharides

More Information
  • Received Date: May 16, 2022
  • Available Online: February 13, 2023
  • Oligosaccharide is a new type of functional glycogen and widely used in the food field. β-glucooligosaccharides are kinds of oligosaccharides composed of 2~20 glucoses connected by β-glycosidic bonds, which are mainly prepared by the degradation from β-glucans with different methods. β-glucooligosaccharides possess characteristics of low molecular weight, good water solubility, unique structure and high absorption efficiency, resulting in many biological activities such as regulating intestinal flora, enhancing immunity and anti-tumor, etc. Therefore, they have a broad application prospect in food, health products, medicine and other fields. In order to promote the research and development of β-glucooligosaccharides, this paper reviews the recent studies on the degradation preparation, separation and purification, structural characterization and biological activity of β-glucooligosaccharides, which is expected to provide references for the further research and utilization of β-glucooligosaccharides.
  • loading
  • [1]
    杨文卿, 姜涛, 程路峰. 基于网络药理学与实验研究探讨β-葡聚糖治疗S180腹水瘤的作用机制[J]. 中南药学,2022,20(2):323−329. [YANG W Q, JIANG T, CHENG L F. Mechanism of β-glucan for S180 ascites tumor based on network pharmacology and experimental study[J]. Central South Pharmacy,2022,20(2):323−329.
    [2]
    NAKASHIMA A, YAMAD K, IWATA O, et al. β-Glucan in foods and its physiological functions[J]. Journal of Nutritional Science and Vitaminology,2018,64(1):8−17. doi: 10.3177/jnsv.64.8
    [3]
    CIECIERSKA A, DRYWIEN M E, HAMULKA J, et al. Nutraceutical functions of beta-glucans in human nutrition[J]. Roczniki Panstwowego Zakladu Higieny,2019,70(4):315−324.
    [4]
    王颖, 陆栋, 魏巍, 等. 酵母β-葡聚糖对C离子辐射损伤小鼠免疫系统的防护作用[J]. 原子核物理评论,2012,29(3):285−289. [WANG Y, LU D, WEI W, et al. Protective effect of yeast β-glucan on immune system carbon ions[J]. Nuclear Physics Review,2012,29(3):285−289. doi: 10.11804/NuclPhysRev.29.03.285
    [5]
    于春微, 李冬芳, 刘世雄, 等. 酵母β-葡聚糖对脂多糖诱导的绵羊淋巴细胞氧化应激损伤的保护作用[J]. 动物营养学报,2020,32(6):2904−2910. [YU C W, LI D F, LIU S X, et al. Protective effects of β-glucan from Saccharomyces cerevisiae on lipopolysaccharide induced oxidative stress injury in sheep lymphocyte[J]. Chinese Journal of Animal Nutrition,2020,32(6):2904−2910. doi: 10.3969/j.issn.1006-267x.2020.06.051
    [6]
    DU B, MEENU M, LIU H, et al. A concise review on the molecular structure and function relationship of β-glucan[J]. International Journal of Molecular Sciences,2019,20(16):4032. doi: 10.3390/ijms20164032
    [7]
    KUSMIATI, DHEWANTARA F X R. Cholesterol-lowering effect of beta-glucan extracted from Saccharomyces cerevisiae in rats[J]. Scientia Pharmaceutica,2016,84(1):153−165. doi: 10.3797/scipharm.ISP.2015.07
    [8]
    YAN J K, WANG Y Y, MA H L, et al. Ultrasonic effects on the degradation kinetics, preliminary characterization antioxidant activities of polysaccharides from Phellinus linteus mycelia[J]. Ultrasonics Sonochemistry,2016,29:251−257. doi: 10.1016/j.ultsonch.2015.10.005
    [9]
    KIM Y W, KIM K H, CHOI H J, et al. Anti-diabetic activity of beta-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei[J]. Biotechnology Letters,2005,27(7):483−487. doi: 10.1007/s10529-005-2225-8
    [10]
    陈晨, 何蒙蒙, 吴泽蓉, 等. 青稞β-葡聚糖的研究现状与展望[J]. 中国食品添加剂,2020,31(2):172−177. [CHEN C, HE M M, WU Z R, et al. Research status and prospect of highland barley beta-glucan[J]. China Food Additives,2020,31(2):172−177.
    [11]
    杨成峻, 陈明舜, 戴涛涛, 等. 燕麦β-葡聚糖功能与应用研究进展[J]. 中国食品学报,2021,21(6):301−311. [YANG C J, CHEN M S, DAI T T, et al. Research progress on function and application of β-glucan in oat[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(6):301−311.
    [12]
    LIU Y F, ZHANG J S, TANG Q J, et al. Physicochemical characterization of a high molecular weight bioactive β-D-glucan from the fruiting bodies of Ganoderma lucidum[J]. Carbohydrate Polymers,2014,101:968−974. doi: 10.1016/j.carbpol.2013.10.024
    [13]
    李兆兰. 裂褶多糖的结构研究[J]. 南京大学学报(自然科学版),1994(3):482−487. [LI Z L. Structural study of schizophyllan[J]. Journal of Nanjing University (Natural Sciences),1994(3):482−487.
    [14]
    谢冰莹. 猴头菇多糖的制备分离、结构鉴定和葡聚糖的序列研究[D]. 苏州: 苏州大学, 2020

    XIE B Y. The preparation, fractionation, structural elucidation of polysaccharides from Hericium erinaceus and the research on sequence of glucan[D]. Suzhou: Soochow University, 2020.
    [15]
    李万坤, 闫鸿斌, 田广孚, 等. 香菇β-葡聚糖对雏鸡脾和胸腺淋巴细胞以及腹腔巨噬细胞一氧化氮产生的影响[J]. 中国兽医科学,2007(7):597−601. [LI W K, YAN H B, TIAN G F, et al. Effect of β-lentinan on NO productive capacity of splenic and thymus lymphocytes and abdominal macrophage in chickens[J]. Chinese Veterinary Science,2007(7):597−601.
    [16]
    ZHENG Z M, HUANG Q L, KANG Y, et al. Different molecular sizes and chain conformations of water-soluble yeast β-glucan fractions and their interactions with receptor Dectin-1[J]. Carbohydrate Polymers,2021,273:118568. doi: 10.1016/j.carbpol.2021.118568
    [17]
    MENG Y, GANG F, YUMEI S, et al. Biosynthesis and applications of curdlan[J]. Carbohydrate Polymers,2021,273:118597. doi: 10.1016/j.carbpol.2021.118597
    [18]
    HENTATI F, TOUNSI L, DJOMDI D, et al. Bioactive polysaccharides from seaweeds[J]. Molecules,2020,25(14):3152. doi: 10.3390/molecules25143152
    [19]
    SUJIT M, MOEKO K, TSUYOSHI I, et al. Automated electrochemical assembly of the β-(1,3)-β-(1,6)-glucan hexasaccharide using thioglucoside building blocks[J]. Asian Journal of Organic Chemistry,2018,7(9):1802−1805. doi: 10.1002/ajoc.201800345
    [20]
    杨飞飞. 中药多糖控制降解寡糖在中药鉴定中的应用研究[D]. 保定: 河北大学, 2016

    YANG F F. Study on identification of traditional Chinese medicines by the application of oligosaccharides from polysaccharide degradation products[D]. Baoding: Hebei University, 2016.
    [21]
    傅赟彬, 刘启顺, 李曙光, 等. 可德兰寡糖的制备及其组分分析[J]. 食品科学,2011,32(3):6−9. [FU Y B, LIU Q S, LI S G, et al. Preparation and component analysis of curdlan oligomers[J]. Food Science,2011,32(3):6−9.
    [22]
    秦秀, 刘艳芳, 张劲松, 等. 不同处理方法对灵芝β-葡聚糖降解效果的比较研究[J]. 菌物学报,2021,40(9):2495−2504. [QIN X, LIU Y F, ZHANG J S, et al. A comparative study of different methods of degrading Ganoderma lingzhi β-glucan[J]. Mycosystema,2021,40(9):2495−2504.
    [23]
    FAURE A M, SANCHEZ A, ZABARA A, et al. Modulating the structural properties of β-d-glucan degradation products by alternative reaction pathways[J]. Carbohydrate Polymers,2014,99:679−686. doi: 10.1016/j.carbpol.2013.08.022
    [24]
    LEE S H, JANG G Y, KIM M Y, et al. Physicochemical and in vitro binding properties of barley β-glucan treated with hydrogen peroxide[J]. Food Chemistry,2016,192:729−735. doi: 10.1016/j.foodchem.2015.07.063
    [25]
    ZHU Q, WU S J. Water-soluble β-1,3-glucan prepared by degradation of curdlan with hydrogen peroxide[J]. Food Chemistry,2019,283:302−304. doi: 10.1016/j.foodchem.2019.01.036
    [26]
    欧春艳, 李林通. 壳聚糖降解研究的最新进展[J]. 广州化工,2013,41(6):13−15. [OU C Y, LI L T. Recent progress of study on degradation of chitosan[J]. Guangzhou Chemical Industry,2013,41(6):13−15. doi: 10.3969/j.issn.1001-9677.2013.06.005
    [27]
    李兆龙, 汪瑛琦, 谢裕颖, 等. 壳聚糖的敏化辐射降解[J]. 辐射研究与辐射工艺学报,2017,35(1):37−43. [LI Z L, WANG Y Q, ZIE Y Y, et al. Irradiation and sensitizing effects on chitosan degradation[J]. Journal of Radiation Research and Radiation Process,2017,35(1):37−43.
    [28]
    KHAN A A, GANI A, MASOODI F A, et al. Structural, thermal, functional, antioxidant and antimicrobial properties of β-D-glucan extracted from baker's yeast (Saccharomyces cereviseae)-effect of γ-irradiation[J]. Carbohydrate Polymers,2016,140:442−450. doi: 10.1016/j.carbpol.2016.01.003
    [29]
    BYUN E H, KIM J H, SUNG N Y, et al. Effects of gamma irradiation on the physical and structural properties of β-glucan[J]. Radiation Physics and Chemistry,2008,77(6):781−786. doi: 10.1016/j.radphyschem.2007.12.008
    [30]
    WANG D, KIM D H, YOON J J, et al. Production of high-value β-1,3-glucooligosaccharides by microwave-assisted hydrothermal hydrolysis of curdlan[J]. Process Biochemistry,2016,52:233−237.
    [31]
    YAN J K, PEI J J, MA H L, et al. Effects of ultrasound on molecular properties, structure, chain conformation and degradation kinetics of carboxylic curdlan[J]. Carbohydrate Polymers,2015,121:64−70. doi: 10.1016/j.carbpol.2014.11.066
    [32]
    林勤保, 高大维, 闵亚光. 超声波在多糖降解及提取中的应用[J]. 应用声学,1997,16(5):47−49. [LIN Q B, GAO D W, MIN Y G. Ultrasonic depolymerization and extraction of polysaccharides[J]. Applied Acoustics,1997,16(5):47−49. doi: 10.11684/j.issn.1000-310X.1997.05.011
    [33]
    SIBAKOV J, MYLLYMKI O, SUORTTI T, et al. Comparison of acid and enzymatic hydrolyses of oat bran β-glucan at low water content[J]. Food Research International,2013,52(1):99−108. doi: 10.1016/j.foodres.2013.02.037
    [34]
    LI J, ZHU L, ZHAN X B, et al. Purification and characterization of a new endo-β-1,3-glucanase exhibiting a high specificity for curdlan for production of β-1,3-glucan oligosaccharides[J]. Food Science and Biotechnology,2014,23(3):799−806. doi: 10.1007/s10068-014-0108-2
    [35]
    QIAN Z G, WU S J, PAN S K, et al. Preparation of (1→3)-β-d-glucan oligosaccharides by hydrolysis of curdlan with commercial α-amylase[J]. Carbohydrate Polymers,2012,87(3):2362−2364. doi: 10.1016/j.carbpol.2011.11.011
    [36]
    ZHENG Z M, HUANG Q L, LUO X G, et al. Effects and mechanisms of ultrasound- and alkali-assisted enzymolysis on production of water-soluble yeast β-glucan[J]. Bioresource Technology,2019,273:394−403. doi: 10.1016/j.biortech.2018.11.035
    [37]
    KUMAGAI Y, OKUYAMA M, KIMURA A. Heat treatment of curdlan enhances the enzymatic production of biologically active β-(1,3)-glucan oligosaccharides[J]. Carbohydrate Polymers,2016,146:396−401. doi: 10.1016/j.carbpol.2016.03.066
    [38]
    曹柳. 褐藻胶的提取纯化、氧化降解及体外活性研究[D]. 济南: 山东大学, 2015

    CAO L. Research on isolation, purification, oxidative degradation and in vitro activities of alginate[D]. Jinan: Shandong University, 2015.
    [39]
    姜瑞芝, 王颖, 陈英红, 等. 猴头菌寡糖的化学研究[J]. 中国药学杂志,2008,43(5):41−344. [JIANG R Z, WANG Y, CHEN Y H, et al. Chemical study on oligosaccharides of Hericium erinaceus[J]. Chinese Journal of Pharmacy,2008,43(5):41−344. doi: 10.3321/j.issn:1001-2494.2008.05.007
    [40]
    秦秀. 灵芝β-葡聚糖的降解工艺优化及寡糖片段的分离纯化和活性研究[D]. 上海: 华东理工大学, 2021

    QIN X. Study on the degradation of Ganoderma lingzhi β-glucan and the separation and in vitro activities of the product[D]. Shanghai: East China University of Science and Technology, 2021.
    [41]
    FU Y, WANG M, WANG W, et al. (1→3)-β-d-glucan oligosaccharides monomers purification and its H2O2 induction effect study[J]. International Journal of Biological Macromolecules,2015,81:1069−1073. doi: 10.1016/j.ijbiomac.2015.09.028
    [42]
    宗玉. 直链β-1, 3-葡寡糖的制备、鉴定及其抗菌活性的初步分析[D]. 无锡: 江南大学, 2013

    ZONG Y. Preparation, identification and preliminary analysis of antibacterial activity of linear β-1, 3-glucanoligosaccharides[D]. Wuxi: Jiangnan University, 2013.
    [43]
    王仲孚, 张英, 林雪, 等. 1-苯基-3-甲基-5-吡唑啉酮(PMP)柱前衍生化寡糖链的HPLC分离及其激光解吸电离质谱分析[J]. 化学学报,2007,65(23):2761−2764. [WANG Z F, ZHANG Y, LIN X, et al. HPLC separation of 1-Phenyl-3-methyl-5-pyrazolone derivatized oligosaccharides and its matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification[J]. Acta Chemistry,2007,65(23):2761−2764. doi: 10.3321/j.issn:0567-7351.2007.23.019
    [44]
    WANG J Q, ZHAO J, NIE S P, et al. Rapid profiling strategy for oligosaccharides and polysaccharides by MALDI TOF mass spectrometry[J]. Food Hydrocolloids,2022,124:107237. doi: 10.1016/j.foodhyd.2021.107237
    [45]
    郜茜. 人乳寡糖的衍生化分离制备、再生及质谱结构分析[D]. 西安: 西北大学, 2019

    GAO X. Derivatization, separation, regeneration and mass spectrometry analysis of human milk oligosaccharides[D]. Xi'an: Northwest University, 2019.
    [46]
    孙玉姣, 戚歆宇, 张涵, 等. 可得然胶酸法降解寡糖的HPLC/ESI-MS分析[J]. 陕西科技大学学报,2017,35(3):143−147,158. [SUN Y J, QI X Y, ZHANG H, et al. Analysis on oligosaccharide products of curdlan from acidic hydrolysis by using HPLC and ESI-MS[J]. Journal of Shaanxi University of Science and Technology,2017,35(3):143−147,158. doi: 10.3969/j.issn.1000-5811.2017.03.027
    [47]
    韩瑶, 吕志华, 姜廷福, 等. 电喷雾多级串联质谱技术区分人乳寡糖异构体[J]. 分析化学,2006(9):1213−1218. [HAN Y, LÜ Z H, JIANG Y F, et al. Application of electrospray lonization-collision induced dissociation-tandem mass spectrometry in differentiation isomers of human milk oligosaccharides[J]. China Journal Analytical Chemistry,2006(9):1213−1218. doi: 10.3321/j.issn:0253-3820.2006.09.002
    [48]
    XIE B, YI L, ZHU Y, et al. Structural elucidation of a branch-on-branch beta-glucan from Hericium erinaceus with a HPAEC-PAD-MS system[J]. Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides,2021,251:117080.
    [49]
    贺海涛, 张洪涛, 曲娟娟, 等. 双酶耦合催化法合成特定聚合度β-1,3-葡寡糖研究[J]. 食品与发酵工业,2018,44(5):1−9. [HE H T, ZHANG H T, QU J J, et al. Synthesis of β-1,3-glucooligosaccharides by double enzyme coupling catalysis[J]. Food and Fermentation Industry,2018,44(5):1−9.
    [50]
    HAMAGAMI H, YAMAGUCHI Y, TANAKA H. Chemical synthesis of residue-selectively 13C and 2H double-isotope-labeled oligosaccharides as chemical probes for the NMR-based conformational analysis of oligosaccharides[J]. The Journal of Organic Chemistry,2020,85(24):16115−16127. doi: 10.1021/acs.joc.0c01939
    [51]
    李红. 低聚糖在功能性食品中的应用研究进展[J]. 现代食品,2021(11):55−57. [LI H. Research progress in the application of oligosaccharides in functional foods[J]. Modern Food,2021(11):55−57.
    [52]
    KUMAR K, RAJULAPATI V, GOYAL A. In vitro prebiotic potential, digestibility and biocompatibility properties of laminari-oligosaccharides produced from curdlan by β-1,3-endoglucanase from Clostridium thermocellum[J]. 3 Biotech,2020,10(6):1−10.
    [53]
    SHI Y, LIU J, YAN Q, et al. In vitro digestibility and prebiotic potential of curdlan (1→3)-β-d-glucan oligosaccharides in Lactobacillus species[J]. Carbohydrate Polymers,2018,188:17−26. doi: 10.1016/j.carbpol.2018.01.085
    [54]
    SIMS I M, RYAN J L, KIM S H. In vitro fermentation of prebiotic oligosaccharides by Bifidobacterium lactis HN019 and Lactobacillus spp[J]. Anaerobe,2014(25):11−17.
    [55]
    MIYANISHI N, IWAMOTO Y, WATANABE E, et al. Induction of TNF-α production from human peripheral blood monocytes with β-1,3-glucan oligomer prepared from laminarin with β-1,3-glucanase from Bacillus clausii NM-1[J]. Journal of Bioscience and Bioengineering,2003,95(2):192−195. doi: 10.1016/S1389-1723(03)80128-7
    [56]
    GISSIBL A, CARE A, PARKER L M, et al. Microwave pretreatment of paramylon enhances the enzymatic production of soluble β-1,3-glucans with immunostimulatory activity[J]. Carbohydrate Polymers,2018,196:339−347. doi: 10.1016/j.carbpol.2018.05.038
    [57]
    TANG J Q, ZHEN H M, WANG N N, et al. Curdlan oligosaccharides having higher immunostimulatory activity than curdlan in mice treated with cyclophosphamide[J]. Carbohydrate Polymers,2019,207:131−142. doi: 10.1016/j.carbpol.2018.10.120
    [58]
    CHEONG K L, QIU H M, DU H, et al. Oligosaccharides derived from red seaweed: Production, properties, and potential health and cosmetic applications[J]. Molecules,2018,23(10):2451. doi: 10.3390/molecules23102451
    [59]
    WU Y, CHEN Y, LU Y, et al. Structural features, interaction with the gut microbiota and anti-tumor activity of oligosaccharides[J]. RSC Advances,2020,10(28):16339−16348. doi: 10.1039/D0RA00344A
    [60]
    宁君, 孔繁祚. 具有重要生理活性寡糖的发现及其应用[J]. 世界科技研究与发展,2001,23(6):22−25. [NING J, KONG F Z. Oligosaccharides having important biological activities and their application[J]. World Science and Technology Research and Development,2001,23(6):22−25. doi: 10.3969/j.issn.1006-6055.2001.06.006
    [61]
    MO L, CHEN Y, LI W, et al. Anti-tumor effects of (1→3)-β-d-glucan from Saccharomyces cerevisiae in S180 tumor-bearing mice[J]. International Journal of Biological Macromolecules,2017(95):385−392.
    [62]
    DIAS I, MILIC I, HEISS C, et al. Inflammation, lipid (Per)oxidation, and redox regulation, antioxidants and redox signaling[J]. Antioxidants and Redox Signaling,2020,33(3):166−190. doi: 10.1089/ars.2020.8022
    [63]
    王冰, 朱莉, 李茂玮, 等. 适应性驯化生产低分子质量β-葡聚糖及其抗氧化活性研究[J]. 食品与发酵工业,2021,47(17):27−33. [WANG B, ZHU L, LI M W, et al. Improvement of low-mass β-glucan yield by adaptive laboratory evolution and its antioxidant activity[J]. Food and Fermentation Industry,2021,47(17):27−33.
    [64]
    刘云, 宋玉蓉, 乐国伟, 等. 微波合成葡寡糖的体外抗氧化作用的研究[J]. 食品与发酵工业,2009,35(10):36−39. [LIU Y, SONG Y R, LE G W, et al. Study on anti-oxidative capacity of glucooligosaccharides synthesized by microwave-assistance[J]. Food and Fermentation Industries,2009,35(10):36−39. doi: 10.13995/j.cnki.11-1802/ts.2009.10.036

Catalog

    Article Metrics

    Article views (312) PDF downloads (35) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return