Citation: | YIN Xuelian, BAI Xue, ZHU Kai, et al. Autolysis Process of Shrimp By-products and Identification of Potential Antifreeze Peptides[J]. Science and Technology of Food Industry, 2023, 44(6): 33−40. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050339. |
[1] |
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021渔业统计年鉴[M]. 北京: 中国农业出版社, 2021
Fisheries and Fisheries Administration, Ministry of Agriculture and Rural Affairs, National Aquatic Technology Promotion Station, China Fisheries Society. 2021 Fisheries statistical yearbook[M]. Beijing: China Agricultural Press, 2021.
|
[2] |
ABDOLLAHI M, OLOFSSON E, ZHANG J N, et al. Minimizing lipid oxidation during pH-shift processing of fish by-products by cross-processing with lingonberry press cake, shrimp shells or brown seaweed[J]. Food Chemistry,2020,10:127078.
|
[3] |
徐文思, 杨祺福, 张梦媛, 等. 两步酶解法制备小龙虾副产物多肽及其抗氧化性研究[J]. 食品研究与开发,2021,42(24):147−154. [XU W S, YANG Q F, ZHANG M Y, et al. Preparation of by-product polypeptides of crayfish by two-step enzymatic hydrolysis and their antioxidant activity[J]. Food Research and Development,2021,42(24):147−154.
|
[4] |
DOAN C T, TRAN T N, WEN I H, et al. Conversion of shrimp head waste for production of a thermotolerant, detergent-stable, alkaline protease by Paenibacillus sp[J]. Catalysts,2019,9(10):14.
|
[5] |
唐志红, 余良, 贺晓丽, 等. 酶解小龙虾副产物蛋白制备α-葡萄糖苷酶抑制肽的研究[J]. 食品科技,2021,46(11):23−27. [TANG Z H, YU L, HE X L, et al. Study on preparation of α-glucosidase inhibitory peptide by enzymatic hydrolysis of crayfish by-product protein[J]. Food Technology,2021,46(11):23−27. doi: 10.3969/j.issn.1005-9989.2021.11.spkj202111004
|
[6] |
VICENTE F A, VENTURA S P M, PASSOS H, et al. Crustacean waste biorefinery as a sustainable cost-effective business model[J]. Chemical Engineering Journal,2022,442:13.
|
[7] |
NIKOO M, XU X, REGENSTEIN J M, et al. Autolysis of Pacific white shrimp (Litopenaeus vannamei) processing by-products: Enzymatic activities, lipid and protein oxidation, and antioxidant activity of hydrolysates[J]. Food Bioscience,2021:39.
|
[8] |
PEREIRA N D A, FANGIO M F, RODRIGUEZ Y E, et al. Characterization of liquid protein hydrolysates shrimp industry waste: Analysis of antioxidant and microbiological activity, and shelf life of final product[J]. J Food Process Pres,2021:e15526.
|
[9] |
陈旭, 蔡茜茜, 汪少芸, 等. 抗冻肽的研究进展及其在食品工业的应用前景[J]. 食品科学,2019,40(17):331−337. [CHEN X, CAI Q Q, WANG S Y, et al. Research progress of antifreeze peptide and its application prospect in food industry[J]. Food Science,2019,40(17):331−337.
|
[10] |
CHEN X, WU J H, LI L, et al. Cryoprotective activity and action mechanism of antifreeze peptides obtained from tilapia scales on Streptococcus thermophilus during cold stress[J]. J Agr Food Chem,2019,67(7):1918−1926. doi: 10.1021/acs.jafc.8b06514
|
[11] |
DU L H, BETTI M. Identification and evaluation of cryoprotective peptides from chicken collagen: Ice-growth inhibition activity compared to that of type I antifreeze proteins in sucrose model systems[J]. J Agr Food Chem,2016,64(25):5232−5240. doi: 10.1021/acs.jafc.6b01911
|
[12] |
CAO H, ZHENG X Z, LIU H, et al. Cryo-protective effect of ice-binding peptides derived from collagen hydrolysates on the frozen dough and its ice-binding mechanisms[J]. LWT-Food Science and Technology,2020,131:109678. doi: 10.1016/j.lwt.2020.109678
|
[13] |
DE CICCO M, MAMONE G, DI STASIO L, et al. Hidden “Di-gestome”: Current analytical approaches provide incomplete peptide inventories of food digests[J]. J Agr Food Chem,2019,67(27):7775−7782. doi: 10.1021/acs.jafc.9b02342
|
[14] |
MARTINI S, SOLIERI L, TAGLIAZUCCHI D. Peptidomics: New trends in food science[J]. Curr Opin Food Sci,2021,39:51−59. doi: 10.1016/j.cofs.2020.12.016
|
[15] |
MONARI S, FERRI M, RUSSO C, et al. Enzymatic production of bioactive peptides from scotta, an exhausted by-product of ricotta cheese processing[J]. PloS One,2019,14(12):e0226834. doi: 10.1371/journal.pone.0226834
|
[16] |
HOU X Y, LI S S, LUO Q Y, et al. Discovery and identification of antimicrobial peptides in Sichuan pepper (Zanthoxylum bungeanum Maxim) seeds by peptidomics and bioinformatics[J]. Appl Microbiol Biot,2019,103(5):2217−2228. doi: 10.1007/s00253-018-09593-y
|
[17] |
PESCUMA M, HÉBERT E M, HAERTLÉ T, et al. Lactobacillus delbrueckii subsp. bulgaricus CRL 454 cleaves allergenic peptides of β-lactoglobulin[J]. Food Chemistry,2015,170:407−414. doi: 10.1016/j.foodchem.2014.08.086
|
[18] |
CAO W H, TIAN S X, WANG H, et al. Release principle of peptides and amino acids during the autolysis of shrimp head from Litopenaeus vannamei after UV-C irradiation stress[J]. Food Science & Nutrition,2020,8(1):170−178.
|
[19] |
CAO W, TAN C, ZHAN X, et al. Ultraviolet irradiation and gradient temperature assisted autolysis for protein recovery from shrimp head waste[J]. Food Chemistry,2014,164:136−141. doi: 10.1016/j.foodchem.2014.05.042
|
[20] |
MOGHADAM M, SALAMI M, MOHAMMADIAN M, et al. Physicochemical and bio-functional properties of walnut proteins as affected by trypsin-mediated hydrolysis[J]. Food Bioscience,2020,36:7.
|
[21] |
张建萍, 陈振家, 闫舟, 等. 不同蛋白酶水解小米分离蛋白工艺[J]. 食品工业,2019,40(12):123−127. [ZHANG J P, CHEN Z J, YAN Z, et al. Different protease hydrolysis process of millet protein isolate[J]. Food Industry,2019,40(12):123−127.
|
[22] |
ROBERT M, ZATYLNY-GAUDIN C, FOURNIER V, et al. Transcriptomic and peptidomic analysis of protein hydrolysates from the white shrimp (L. vannamei)[J]. Journal of Biotechnology,2014,186:30−37. doi: 10.1016/j.jbiotec.2014.06.020
|
[23] |
郑杰, 宋志远, 于笛, 等. 海参体壁自溶的响应面优化及其体外抗氧化活性研究[J]. 中国食品添加剂,2018(12):90−97. [ZHENG J, SONG Z Y, YU D, et al. Response surface optimization of sea cucumber body wall autolysis and its antioxidant activity in vitro[J]. Chinese Food Additives,2018(12):90−97.
|
[24] |
刘芳芳, 林婉玲, 李来好, 等. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理[J]. 食品科学,2020,41(14):15−22. [LIU F F, LIN W L, LI L H, et al. The mechanism of protein change during seabass surimi processing and gel formation[J]. Food Science,2020,41(14):15−22.
|
[25] |
CAO W, ZHANG C, HONG P, et al. Response surface methodology for autolysis para meters optimization of shrimp head and amino acids released during autolysis[J]. Food Chemistry,2008,109(1):176−183. doi: 10.1016/j.foodchem.2007.11.080
|
[26] |
ZHANG M M, XIN X, WU H, et al. Debittering effect of partially purified proteases from soybean seedlings on soybean protein isolate hydrolysate produced by alcalase[J]. Food Chemistry,2021,362:130190. doi: 10.1016/j.foodchem.2021.130190
|
[27] |
黄沐晨, 杨傅佳, 陈旭, 等. 海洋源生物活性肽的构效关系与作用机理研究进展[J]. 食品科学,2021,42(19):271−280. [HUANG M C, YANG B J, CHEN X, et al. Research progress on structure-activity relationship and mechanism of action of marine bioactive peptides[J]. Food Science,2021,42(19):271−280.
|
[28] |
刘含, 曹慧, 徐斐, 等. 不同分子质量胶原抗冻肽的抗冻性能及机理研究[J]. 食品与发酵工业,2021,47(11):104−110. [LIU H, CAO H, XU F, et al. Antifreeze properties and mechanism of collagen antifreeze peptides with different molecular weights[J]. Food and Fermentation Industry,2021,47(11):104−110. doi: 10.13995/j.cnki.11-1802/ts.025969
|
[29] |
PRATIWI R, MALIK A A, SCHADUANGRAT N, et al. CryoProtect: A web server for classifying antifreeze proteins from nonantifreeze proteins[J]. J Chem,2017(8):1−15.
|
[30] |
CHEN X, WU J H, CAI X X, et al. Production, structure-function relationships, mechanisms, and applications of antifreeze peptides[J]. Compr Rev Food Sci F,2021,20(1):542−562. doi: 10.1111/1541-4337.12655
|
[31] |
齐诗哲. 乳源抗菌肽的制备及蛋白质组学分析[D]. 大连: 大连海洋大学, 2022
QI S Z. Preparation and proteomic analysis of milk derived antimicrobial peptides[D]. Dalian: Dalian Ocean University, 2022.
|