Citation: | LI Xia, ZHANG Qiying, GUAN Yuan, et al. Preparation of Sulfated Xylans and Its in Vitro Proliferation of Probiotics[J]. Science and Technology of Food Industry, 2023, 44(13): 134−140. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080112. |
[1] |
TSAI Y L, LIN T L, CHANG C J, et al. Probiotics, prebiotics and amelioration of diseases[J]. Journal of Biomedical Science,2019,26:3. doi: 10.1186/s12929-018-0493-6
|
[2] |
ONISZCZUK A, ONISZCZUK T, GANCARZ M, et al. Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases[J]. Molecules,2021,26(4):1172. doi: 10.3390/molecules26041172
|
[3] |
YANG H, LIU Y Q, CAI R, et al. A narrative review of relationship between gut microbiota and neuropsychiatric disorders: mechanisms and clinical application of probiotics and prebiotics[J]. Annals of Palliative Medicine,2021,10(2):2304−2313. doi: 10.21037/apm-20-1365
|
[4] |
ENAM F, MANSELL T J. Prebiotics: Tools to manipulate the gut microbiome and metabolome[J]. Journal of Industrial Microbiology & Biotechnology,2019,46(9-10):1445−1459.
|
[5] |
SARDARI R, KARLSSON E N. Marine poly- and oligosaccharides as prebiotics[J]. Journal of Agricultural and Food Chemistry,2018,66(44):11544−11549. doi: 10.1021/acs.jafc.8b04418
|
[6] |
YANG Y, ZHAO C H, DIAO M X, et al. The prebiotic activity of simulated gastric and intestinal digesta of polysaccharides from the Hericium erinaceus[J]. Molecules,2018,23(12):3158. doi: 10.3390/molecules23123158
|
[7] |
HUANG F, HONG R Y, ZHANG R F, et al. Dynamic variation in biochemical properties and prebiotic activities of polysaccharides from longan pulp during fermentation process[J]. International Journal of Biological Macromolecules,2019,132(1):915−921.
|
[8] |
CRUZ-RUBIO J M, MUELLER M, VIERNSTEIN H, et al. Prebiotic potential and chemical characterization of the poly and oligosaccharides present in the mucilage of Opuntia ficus-indica and Opuntia joconostle[J]. Food Chemistry,2021,362:130167. doi: 10.1016/j.foodchem.2021.130167
|
[9] |
LU X M, LI N Y, ZHAO R J, et al. In vitro prebiotic properties of garlic polysaccharides and its oligosaccharide mixtures obtained by acid hydrolysis[J]. Frontiers in Nutrition,2021,8:798450. doi: 10.3389/fnut.2021.798450
|
[10] |
HETTRICH K, DRECHSLER U, LOTH F, et al. Preparation and characterization of water-soluble xylan ethers[J]. Polymers,2017,9(4):129.
|
[11] |
姜玉莹. 玉米麸皮阿拉伯木聚糖的提取、纯化及抗炎活性研究[D]. 长春: 吉林农业大学, 2019.
JIANG Y Y. Extraction, purfication and anti-inflammatory activity of corn bran arabinoxylan[D]. Changchun: Jilin Agricultural University, 2019.
|
[12] |
田贝贝, 陈洁, 王远辉. 小麦淀粉加工废水中阿拉伯木聚糖的理化性质及抗氧化活性研究[J]. 食品工业科技,2017,38(15):40−44. [TIAN B B, CHEN J, WANG Y H. Study on physicochemical properties and antioxidant activity of arabinoxylan from wheat starch wastewater[J]. Science and Technology of Food Industry,2017,38(15):40−44. doi: 10.13386/j.issn1002-0306.2017.15.009
TIAN B B, CHEN J, WANG Y H. Study on physicochemical properties and antioxidant activity of arabinoxylan from wheat starch wastewater[J]. Science and Technology of Food Industry, 2017, 38(15): 40-44. doi: 10.13386/j.issn1002-0306.2017.15.009
|
[13] |
BHANJA S K, MAITY P, ROUT D, et al. A xylan from the fresh leaves of Piper betle: Structural characterization and studies of bioactive properties[J]. Carbohydrate Polymers,2022,291:119570. doi: 10.1016/j.carbpol.2022.119570
|
[14] |
FUSO A, ROSSO F, ROSSO G, et al. Production of xylo-oligosaccharides (XOS) of tailored degree of polymerization from acetylated xylans through modelling of enzymatic hydrolysis[J]. Food Research International,2022,162:112019. doi: 10.1016/j.foodres.2022.112019
|
[15] |
LIAN Z N, WANG Y N, LUO J, et al. An integrated process to produce prebiotic xylooligosaccharides by autohydrolysis, nanofiltration and endo-xylanase from alkali-extracted xylan[J]. Bioresource Technology,2020,314:123685. doi: 10.1016/j.biortech.2020.123685
|
[16] |
CHEN G J, CHEN X H, YANG B, et al. New insight into bamboo shoot (Chimonobambusa quadrangularis) polysaccharides: Impact of extraction processes on its prebiotic activity[J]. Food Hydrocolloids,2019,95:367−377. doi: 10.1016/j.foodhyd.2019.04.046
|
[17] |
MAITY G N, MAITY P, DASGUPTA A, et al. Structural and antioxidant studies of a new arabinoxylan from green stem Andrographis paniculata (Kalmegh)[J]. Carbohydrate Polymers,2019,212(1):297−303.
|
[18] |
DENG Y N, LIU Q, DANG T T, et al. Preparation, structural characterization and bioactivity of 4-O-methylglucuronoxylan from Artemisia sphaerocephala Krasch[J]. Carbohydrate Polymers,2019,222:115009. doi: 10.1016/j.carbpol.2019.115009
|
[19] |
李和平, 何利霞. 木聚糖的化学修饰及其衍生物的应用研究进展[J]. 化工进展,2009,28(11):1955−1964, 1981. [LI H P, HE L X. Advances in chemical modification of xylan and application of their derivatives[J]. Chemical Industry and Engineering Progress,2009,28(11):1955−1964, 1981. doi: 10.16085/j.issn.1000-6613.2009.11.014
LI H P, HE L X. Advances in chemical modification of xylan and application of their derivatives[J]. Chemical Industry and Engineering Progress, 2009, 28(11): 1955-1964, 1981. doi: 10.16085/j.issn.1000-6613.2009.11.014
|
[20] |
苗露, 周玉恒, 张厚瑞, 等. 蔗渣木聚糖含量检测方法的比较[J]. 食品科学,2016,37(16):162−167. [MIAO L, ZHOU Y H, ZHANG H R, et al. Comparison of analytical methods for the quantitation of xylan in sugarcane bagasse[J]. Food Science,2016,37(16):162−167. doi: 10.7506/spkx1002-6630-201616026
MIAO L, ZHOU Y H, ZHANG H R, et al. Comparison of analytical methods for the quantitation of xylan in sugarcane bagasse[J]. Food Science, 2016, 37(16): 162-167. doi: 10.7506/spkx1002-6630-201616026
|
[21] |
刘昱均. 发酵灵芝多糖的硫酸酯化及其生物活性的研究[D]. 无锡: 江南大学, 2013.
LIU Y J. Studies of fermented Ganoderma lucidum polysaccharides modified by sulfuric acid and their biological acticity[D]. Wuxi: Jiangnan University, 2013.
|
[22] |
XU X D, WANG Q, XUE S Y, et al. Effect of alkali-neutralization treatment on triple-helical aggregates and independent triple helices of curdlan[J]. Carbohydrate Polymers,2021,259:117775. doi: 10.1016/j.carbpol.2021.117775
|
[23] |
刘玉凤, 贾淑颖, 刘飞飞, 等. 不同取代度的硫酸化肠浒苔多糖抗氧化活性研究[J]. 食品工业科技,2016,37(19):142−147, 152. [LIU Y F, JIA S Y, LIU F F, et al. Antioxidant activity of sulfated polysaccharides with different substituting degrees from Enteromorpha intestinalis[J]. Science and Technology of Food Industry,2016,37(19):142−147, 152. doi: 10.13386/j.issn1002-0306.2016.19.019
LIU Y F, JIA S Y, LIU F F, et al. Antioxidant activity of sulfated polysaccharides with different substituting degrees from Enteromorpha intestinalis[J]. Science and Technology of Food Industry, 2016, 37(19): 142-147, 152. doi: 10.13386/j.issn1002-0306.2016.19.019
|
[24] |
HUANG F, LIU H J, ZHANG R F, et al. Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques[J]. Carbohydrate Polymers,2019,206:344−351. doi: 10.1016/j.carbpol.2018.11.012
|
[25] |
QU Y, LI C X, ZHANG C, et al. Optimization of infrared-assisted extraction of Bletilla striata polysaccharides based on response surface methodology and their antioxidant activities[J]. Carbohydrate Polymers,2016,148:345−353. doi: 10.1016/j.carbpol.2016.04.081
|
[26] |
CHEN L, HUANG G L. Antioxidant activities of sulfated pumpkin polysaccharides[J]. International Journal of Biological Macromolecules,2019,126:743−746. doi: 10.1016/j.ijbiomac.2018.12.261
|
[27] |
PTAK S H, SANCHEZ L, FRETTE X, et al. Complementarity of Raman and infrared spectroscopy for rapid characterization of fucoidan extracts[J]. Plant Methods,2021,17:130. doi: 10.1186/s13007-021-00830-6
|
[28] |
SIMKOVIC I, TRACZ A, KELNAR I, et al. Quaternized and sulfated xylan derivative films[J]. Carbohydrate Polymers,2014,99:356−364. doi: 10.1016/j.carbpol.2013.08.075
|
[29] |
XIONG F, LI X, ZHENG L H, et al. Characterization and antioxidant activities of polysaccharides from Passiflora edulis Sims peel under different degradation methods[J]. Carbohydrate Polymers,2019,218:46−52. doi: 10.1016/j.carbpol.2019.04.069
|
[30] |
ZHONG L X, PENG X W, YANG D, et al. Long-chain anhydride modification: A new strategy for preparing xylan films[J]. Journal of Agricultural and Food Chemistry,2013,61(3):655−661. doi: 10.1021/jf304818f
|
[31] |
白长胜, 崔毅, 刘德会, 等. 运用OD值法快速进行乳酸菌活菌计数的研究[J]. 现代畜牧科技,2021,1(3):4−5, 10. [BAI C S, CUI Y, LIU D H, et al. Rapid counting of viable lactic acid bacteria using OD value assay[J]. Modern Animal Husbandry Science & Technology,2021,1(3):4−5, 10. doi: 10.19369/j.cnki.2095-9737.2021.03.002
BAI C S, CUI Y, LIU D H, et al. Rapid counting of viable lactic acid bacteria using OD value assay[J]. Modern Animal Husbandry Science & Technology, 2021, 1(3): 4-5, 10. doi: 10.19369/j.cnki.2095-9737.2021.03.002
|
[32] |
刘小华, 李舒梅, 熊跃玲. 短链脂肪酸对肠道功效及其机制的研究进展[J]. 肠外与肠内营养,2012,19(1):56−58. [LIU X H, LI S M, XIONG Y L. Research progress on effect and mechanism of short chain fatty acid for intestinal tract[J]. Parenteral & Enteral Nutrition,2012,19(1):56−58. doi: 10.16151/j.1007-810x.2012.01.001
LIU X H, LI S M, XIONG Y L. Research progress on effect and mechanism of short chain fatty acid for intestinal tract[J]. Parenteral & Enteral Nutrition, 2012, 19(1): 56-58. doi: 10.16151/j.1007-810x.2012.01.001
|
[33] |
SINGH S P, JADAUN J S, NARNOLIYA L K, et al. Prebiotic oligosaccharides: Special focus on fructooligosaccharides, its biosynthesis and bioactivity[J]. Applied Biochemistry and Biotechnology,2017,183(2):613−635. doi: 10.1007/s12010-017-2605-2
|
[34] |
ABBASILIASI S, TAN J S, BELLO B, et al. Prebiotic efficacy of coconut kernel cake's soluble crude polysaccharides on growth rates and acidifying property of probiotic lactic acid bacteria in vitro[J]. Biotechnology & Biotechnological Equipment,2019,33(1):1216−1227.
|
[35] |
别蒙, 谢笔钧, 孙智达. 不同取代度水溶性羧甲基茯苓多糖的制备、结构表征及体外抑菌活性[J]. 食品科学,2020,41(12):67−76. [BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science,2020,41(12):67−76.
BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science, 2020, 41(12): 67-76.
|
[36] |
WANG X, HUANG M Y, YANG F, et al. Rapeseed polysaccharides as prebiotics on growth and acidifying activity of probiotics in vitro[J]. Carbohydrate Polymers,2015,125(1):232−240.
|
[37] |
RAZALI M F, FAUZI N A M, SULAIMAN A, et al. Effect of high-pressure processing on prebiotic potential of stingless bee (Kelulut) honey: Tested upon Lactobacillus acidophilus and Lactobacillus brevis[J]. Journal of Food Processing and Preservation,2019,43(7):13946.
|
[38] |
KOK C R, QUINTERO D F G, NIYIRORA C, et al. An in vitro enrichment strategy for formulating synergistic synbiotics[J]. Applied and Environmental Microbiology,2019,85(16):e01073−01019.
|
[39] |
王新, 王利, 王青云, 等. 益生元对益生菌生长代谢的研究[J]. 食品安全导刊,2022,1(7):76−79. [WANG X, WANG L, WANG Q Y, et al. Study on the growth and metabolism of probiotics by prebiotics[J]. China Food Satefy Magazine,2022,1(7):76−79. doi: 10.16043/j.cnki.cfs.2022.07.021
WANG X, WANG L, WANG Q Y, et al. Study on the growth and metabolism of probiotics by prebiotics[J]. China Food Satefy Magazine, 2022, 1(7): 76-79. doi: 10.16043/j.cnki.cfs.2022.07.021
|
[40] |
李霞, 陈海鸥, 韩淑芳, 等. 羧甲基化木聚糖的益生元作用研究[J]. 食品与发酵工业,2021,47(2):45−50. [LI X, CHEN H O, HAN S F, et al. The prebiotic effect of carboxymethyl xylan[J]. Food and Fermentation Industries,2021,47(2):45−50. doi: 10.13995/j.cnki.11-1802/ts.024603
LI X, CHEN H O, HAN S F, et al. The prebiotic effect of carboxymethyl xylan[J]. Food and Fermentation Industries, 2021, 47(2): 45-50. doi: 10.13995/j.cnki.11-1802/ts.024603
|
[41] |
DE MATTOS N R, COLODETTE J L, DE OLIVEIRA C R. Alkaline extraction and carboxymethylation of xylans from corn fiber[J]. Cellulose,2019,26(3):2177−2189. doi: 10.1007/s10570-018-02236-5
|
[42] |
YU Y, SONG Q Q, HUANG L X, et al. Immunomodulatory activities of sulfated Cyclocarya paliurus polysaccharides with different degrees of substitution on mouse spleen lymphocytes[J]. Journal of Functional Foods,2020,64:103706. doi: 10.1016/j.jff.2019.103706
|
[43] |
张廷辉, 汤承浩, 王晓铭, 等. 腌韭菜根中五种腐败菌菌液OD值与其活菌数相关性研究[J]. 贵州科学,2021,39(6):17−21. [ZHANG T H, TANG C H, WANG X M, et al. Correlation between OD value and number of live bacteria of five kinds of spoilage bacteria in pickled Chinese chives roots[J]. Guizhou Science,2021,39(6):17−21.
ZHANG T H, TANG C H, WANG X M, et al. Correlation between OD value and number of live bacteria of five kinds of spoilage bacteria in pickled Chinese chives roots[J]. Guizhou Science, 2021, 39(6): 17-21.
|