Citation: | GUO Kaien, YAN Gonghua, ZENG Xin, et al. Compound Collagen Peptides Powder Improves Chronic Skin Damage Resulting from Ultraviolet Irradiation in Mice and the Mechanism[J]. Science and Technology of Food Industry, 2023, 44(15): 401−409. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100294. |
[1] |
SOLANO F. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources[J]. Molecules,2020,25(7):1537. doi: 10.3390/molecules25071537
|
[2] |
YARDMAN-FRANK J M, FISHER D E. Skin pigmentation and its control: From ultraviolet radiation to stem cells[J]. Experimental Dermatology,2021,30(4):560−571. doi: 10.1111/exd.14260
|
[3] |
ANSARY T M, HOSSAIN M, KAMIYA K, et al. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging[J]. International Journal of Molecular Sciences,2021,22(8):3974. doi: 10.3390/ijms22083974
|
[4] |
CADET J, DOUKI T. Formation of UV-induced DNA damage contributing to skin cancer development[J]. Photochemical & Photobiological Sciences,2018,17(12):1816−1841.
|
[5] |
LI L, HWANG E, NGO H T T, et al. Antiphotoaging effect of Prunus yeonesis blossom extract via inhibition of MAPK/AP‐1 and regulation of the TGF‐βI/Smad and Nrf2/ARE signaling pathways[J]. Photochemistry and Photobiology,2018,94(4):725−732. doi: 10.1111/php.12894
|
[6] |
XU M Y, PANG Q Q, XU S Q, et al. Hypoxia-inducible factor-1α activates transforming growth factor-β1/Smad signaling and increases collagen deposition in dermal fibroblasts[J]. Oncotarget,2018,9(3):3188. doi: 10.18632/oncotarget.23225
|
[7] |
ZHENG Y, XU Q F, CHEN H Y, et al. Inhibition of MMPs Cat G and downregulates the signaling of TGF-β/Smad in chronic photodamaged human fibroblasts[J]. Eur Rev Med Pharmacol Sci,2017,21(22):5160−5165.
|
[8] |
CHEN X, YANG C S, JIANG G, Research progress on skin photoaging and oxidative stress[J]. Postepy Dermatol Alergol, 2021, 38(6): 931-936.
|
[9] |
BOLKE L, SCHLIPPE G, GERß J, et al. A collagen supplement improves skin hydration, elasticity, roughness, and density: Results of a randomized, placebo-controlled, blind study[J]. Nutrients,2019,11(10):2494. doi: 10.3390/nu11102494
|
[10] |
PROKSCH E, SCHUNCK M, ZAGUE V, et al. Oral intake of specific bioactive collagen peptides reduces skin wrinkles and increases dermal matrix synthesis[J]. Skin Pharmacology and Physiology,2014,27(3):113−119. doi: 10.1159/000355523
|
[11] |
OBA C, OHARA H, MORIFUJI M, et al. Collagen hydrolysate intake improves the loss of epidermal barrier function and skin elasticity induced by UVB irradiation in hairless mice[J]. Photodermatology, Photoimmunology & Photomedicine,2013,29(4):204−211.
|
[12] |
XIE Z, WANG X G, YU S Y, et al. Antioxidant and functional properties of cowhide collagen peptides[J]. J Food Sci,2021,86(5):1802−1818. doi: 10.1111/1750-3841.15666
|
[13] |
赵芷芊, 王敏, 张志清. 植物多糖的提取及抗氧化功效的研究进展[J]. 食品工业科技,2018,39(13):337−342. [ZHAO Z Q, WANG M, ZHANG Z Q. Research progress on extraction and antioxidant effect of plant polysaccharides[J]. Science and Technology of Food Industry,2018,39(13):337−342. doi: 10.13386/j.issn1002-0306.2018.13.062
ZHAO Z Q, WANG M, ZHANG Z Q. Research progress on extraction and antioxidant effect of plant polysaccharides[J]. Science and Technology of Food Industry, 2018, 39(13): 337-342. doi: 10.13386/j.issn1002-0306.2018.13.062
|
[14] |
MARIA C, BIRGIT W, GIORGIA B, et al. Plant extracts and natural compounds used against UVB-induced photoaging[J]. Biogerontology,2017,18(4):499−516. doi: 10.1007/s10522-017-9715-7
|
[15] |
郑瑞生. 植物中抗氧化活性成分及其提取技术的研究[J]. 食品工业科技,2011,32(11):459−463, 467. [ZHENG R S. Study on antioxidant components and extraction technology in plants[J]. Science and Technology of Food Industry,2011,32(11):459−463, 467.
ZHENG R S. Study on antioxidant components and extraction technology in plants[J]. Science and Technology of Food Industry, 2011, 32(11): 459-463, 467.
|
[16] |
徐叔云, 卞如濂, 陈修. 药理实验方法学[M]. 第三版. 北京: 人民卫生出版社, 2002: 1698
XU S Y, BIAN R L, CHEN X. Methodology of pharmacological experiment[M]. The third edition. Beijing: People’s Medical Publishing House, 2002: 1698.
|
[17] |
韩旭, 蒋靖. 慢性紫外线损伤小鼠模型皮肤角质形成细胞中CK1和CK10的表达研究[J]. 临床皮肤科杂志,2016,45(11):762−765. [HAN X, JIANG J. Expression of CK1 and CK10 in keratinocytes of mouse model with chronic ultraviolet radiation injury[J]. Journal of Clinical Dermatology,2016,45(11):762−765.
HAN X, JIANG J. Expression of CK1 and CK10 in keratinocytes of mouse model with chronic ultraviolet radiation injury[J]. Journal of Clinical Dermatology, 2016, 45(11): 762-765.
|
[18] |
王莹. Caspase-3、Bax、Bcl-2和Beclin-1在慢性紫外线损伤小鼠模型表皮角质形成细胞中的表达及意义[D]. 天津: 天津医科大学, 2012
WANG Y. The expression and significance of Caspase-3, Bax, Bcl-2 and Beclin-1 in epidermal keratinocytes of chronic ultraviolet injury mouse model[D]. Tianjin: Tianjin Medical Sciences University, 2012.
|
[19] |
邓明高. 松茸提取物对UVB诱导的小鼠皮肤氧化应激和炎症的保护作用[D]. 广州: 广东工业大学, 2020
DENG M G. Protective effects of matsutake extract on UVB-induced oxidative stress and inflammation in mice skin[D]. Guangzhou: Guangdong University, 2020.
|
[20] |
BISSETT D L, CHATTERJEE R, HANNON D P. Photoprotective effect of topical anti-inflammatory agents against ultraviolet radiation-induced chronic skin damage in the hairless mouse[J]. Photodermatology, Photoimmunology & Photomedicine,1990,7(4):153−158.
|
[21] |
路宁宁. 水母雪莲多糖对小鼠光老化皮肤含水量、AQP-3的影响研究[D]. 西宁: 青海大学, 2021
LU N N. Effect of Saussurea medusa polysaccharide on water content and AQP-3 of photoaging skin in mice[D]. Xining: Qinghai University, 2021.
|
[22] |
逯岩松. 芍药苷对UVA诱导皮肤光损伤的防护作用及机制研究[D]. 沈阳: 中国医科大学, 2020
LU Y S. Protective effect and mechanism of paeoniflorin on skin photodamage induced by UVA[D]. Shenyang: China Medical University, 2020.
|
[23] |
王天顺. 杭白菊、野菊花和神农香菊抗氧化损伤作用及有效成分研究[D]. 武汉: 湖北中医药大学, 2022
WANG T S. Study on antioxidative damage and effective components of Chrysanthemum morifolium, Chrysanthemum indicum and Chrysanthemum indicum[D]. Wuhan: Hubei University of Chinese Medicine, 2022.
|
[24] |
王明月. 潞党参通过IL-15及其受体调控光老化小鼠皮肤炎症反应作用机制[D]. 沈阳: 辽宁中医药大学, 2020
WANG M Y. Mechanism of Ludangshen regulating skin inflammation in photoaging mice by IL-15 and its receptor[D]. Shenyang: Liaoning University of Chinese Medicine, 2020.
|
[25] |
谢璟. 杨梅黄酮对紫外线诱导的皮肤光老化保护作用及潜在机制研究[D]. 济南: 山东大学, 2019
XIE J. Study on the protective effect and potential mechanism of myricetin on UV-induced skin photoaging[D]. Jinan: Shandong University, 2019.
|
[26] |
金媛媛. 刺五加糖蛋白对紫外线引起的皮肤光老化的修复作用及机制研究[D]. 长春: 长春中医药大学, 2022
JIN Y Y. Study on the repair effect and mechanism of Acanthopanax senticosus glycoprotein on skin photoaging induced by ultraviolet radiation[D]. Changchun: Changchun University of Chinese Medicine, 2022.
|
[27] |
XIAO P, CHEN D. The effect of sun tan lotion on skin by using skin TEWL and skin water content measurements[J]. Sensors (Basel),2022,22(9):3595. doi: 10.3390/s22093595
|
[28] |
LIN Y C, CHEN Y C, HWANG B F, et al. Acute dermal effects of solar UV irradiation and efficacy of sunscreen use[J]. Environmental Pollutants and Bioavailability,2022,34(1):456−68. doi: 10.1080/26395940.2022.2128883
|
[29] |
KANG M K, KIM DONG Y, OH H, et al. Dietary collagen hydrolysates ameliorate furrowed and parched skin caused by photoaging in hairless mice[J]. Int J Mol Sci,2021,22(11):6137. doi: 10.3390/ijms22116137
|
[30] |
于建伟, 杜芬, 陶宇, 等. 南极磷虾肽抗皮肤光老化作用的研究[J]. 食品工业科技,2021,42(20):372−376. [YU J W, DU F, TAO Y, et al. Study on anti-skin photoaging effect of antarctic krill peptide[J]. Science and Technology of Food Industry,2021,42(20):372−376. doi: 10.13386/j.issn1002-0306.2021030351
YU J W, DU F, TAO Y, et al. Study on anti-skin photoaging effect of antarctic krill peptide[J]. Science and Technology of Food Industry, 2021, 42(20): 372-376. doi: 10.13386/j.issn1002-0306.2021030351
|
[31] |
KHAN A, BAI H, KHAN A, et al. Neferine prevents ultraviolet radiation-induced skin photoaging[J]. Exp Ther Med,2020,19(5):3189−96.
|
[32] |
DE JAGER T L, COCKRELL A E, DU PLESSIS S S. Ultraviolet light induced generation of reactive oxygen species[J]. Ultraviolet Light in Human Health, Diseases and Environment,2017,996:15−23.
|
[33] |
WIRAGUNA A A G P, PANGKAHILA W, ASTAWA I N M. Antioxidant properties of topical Caulerpa sp. extract on UVB-induced photoaging in mice[J]. Dermatology Reports,2018,10(2):7597.
|
[34] |
ROCHA-GUZMÁN N E, SIMENTAL-MENDÍA L E, BARRAGÁN-ZÚÑIGA L J, et al. Effect of Buddleja scordioides K. leaves infusion on lipid peroxidation in mice with ultraviolet light-induced oxidative stress[J]. Medicinal Chemistry Research,2018,27(10):2379−2385. doi: 10.1007/s00044-018-2243-4
|
[35] |
BAVKAR L N, PATIL R S, ROOGE S B, et al. Acceleration of protein glycation by oxidative stress and comparative role of antioxidant and protein glycation inhibitor[J]. Mol Cell Biochem,2019,459(1):61−71.
|
[36] |
LYU J L, LIU Y J, WEN K C, et al. Protective effect of djulis (Chenopodium formosanum) extract against UV- and AGEs-induced skin aging via alleviating oxidative stress and collagen degradation[J]. Molecules,2022,27(7):2332. doi: 10.3390/molecules27072332
|
[37] |
GENG R, KANG S G, HUANG K, et al. Boosting the photoaged skin: The potential role of dietary components[J]. Nutrients,2021,13(5):1691. doi: 10.3390/nu13051691
|
[38] |
WANG J, QIU H, XU Y, et al. The biological effect of recombinant humanized collagen on damaged skin induced by UV-photoaging: An in vivo study[J]. Bioact Mater,2022,11:154−165. doi: 10.1016/j.bioactmat.2021.10.004
|
[39] |
PARK S-J, KIM D, LEE M, et al. GT collagen improves skin moisturization in UVB-irradiated HaCaT cells and SKH-I hairless mice[J]. J Med Food,2021,24:1313−1322. doi: 10.1089/jmf.2021.K.0089
|
[40] |
CHOWDHURY A, NOSOUDI N, KARAMCHED S, et al. Polyphenol treatments increase elastin and collagen deposition by human dermal fibroblasts; Implications to improve skin health[J]. J Dermatol Sci,2021,102(2):94−100. doi: 10.1016/j.jdermsci.2021.03.002
|
[41] |
FAN Y F, TAE-HYUN C, JEE-HYEOK C, et al. Hyaluronic acid-cross-linked filler stimulates collagen type 1 and elastic fiber synthesis in skin through the TGF-β/Smad signaling pathway in a nude mouse model[J]. J Plast Reconstr Aesthet Surg,2019,72(8):1355−1362. doi: 10.1016/j.bjps.2019.03.032
|
[42] |
POMATTO L C D, DAVIES J A. Adaptive homeostasis and the free radical theory of ageing[J]. Free Radic Biol Med,2018,124:420−30. doi: 10.1016/j.freeradbiomed.2018.06.016
|
[43] |
OH J H, KIM J, KARADENIZ F, et al. Santamarine shows anti-photoaging properties via inhibition of MAPK/AP-1 and stimulation of TGF-β/Smad signaling in UVA-irradiated HDFs[J]. Molecules,2021,26(12):3585. doi: 10.3390/molecules26123585
|
[44] |
PARK B, HWANG E, SEO S A, et al. Eucalyptus globulus extract protects against UVB-induced photoaging by enhancing collagen synthesis via regulation of TGF-β/Smad signals and attenuation of AP-1[J]. Archives of Biochemistry & Biophysics,2018,637:31−39.
|