Citation: | ZHANG Xuan, ZHAO Wen, GAO Zhe, et al. Research Progress on the Interaction Mechanism of Pectin and Polyphenol and Their Effect on Food Processing Characteristics[J]. Science and Technology of Food Industry, 2024, 45(1): 378−386. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030201. |
[1] |
WU Y, WU W, FARAG M A, et al. Functionalized cellulose nanocrystal embedded into citrus pectin coating improves its barrier, antioxidant properties and potential application in food[J]. Food Chemistry,2023,401:134079. doi: 10.1016/j.foodchem.2022.134079
|
[2] |
ZHU F. Interactions between cell wall polysaccharides and polyphenols[J]. Critical Reviews in Food Science and Nutrition,2018,58(11):1808−1831. doi: 10.1080/10408398.2017.1287659
|
[3] |
CHEYNIER V, HALBWIRTH H, STICH K, et al. Foreword focus on polyphenols[J]. Planta,2017,246(2):183. doi: 10.1007/s00425-017-2745-1
|
[4] |
张杰, 党斌, 杨希娟. 植物多酚的生理活性、抑菌机理及其在食品保鲜中的应用研究进展[J]. 食品工业科技,2022,43(24):1−11. [ZHANG J, DANG B, YANG X J. Research progress on physiological activity, antibacterial mechanism of plant polyphenols and its application in food preservation[J]. Science and Technology of Food Industry,2022,43(24):1−11.] doi: 10.13386/j.issn1002-0306.2022010070
ZHANG J, DANG B, YANG X J. Research progress on physiological activity, antibacterial mechanism of plant polyphenols and its application in food preservation[J]. Science and Technology of Food Industry, 2022, 43(24): 1−11. doi: 10.13386/j.issn1002-0306.2022010070
|
[5] |
VELDERRAIN-RODRIGUEZ G R, PALAFOX-CARLOS H, WALL-MEDRANO A, et al. Phenolic compounds:Their journey after intake[J]. Food & Function,2014,5(2):189−197.
|
[6] |
陈南, 高浩祥, 何强, 等. 植物多酚与淀粉的分子相互作用研究进展[J]. 食品工业科技,2023,44(2):1−12. [CHEN N, GAO H X, HE Q, et al. A review of the molecular interaction between plant polyphenols and starch[J]. Science and Technology of Food Industry,2023,44(2):1−12.] doi: 10.13386/j.issn1002-0306.2022040140
CHEN N, GAO H X, HE Q, et al. A review of the molecular interaction between plant polyphenols and starch[J]. Science and Technology of Food Industry, 2023, 44(2): 1−12. doi: 10.13386/j.issn1002-0306.2022040140
|
[7] |
易翠平, 刘爽, 林本平, 等. 谷物中多酚与多糖之间相互作用的研究进展[J]. 中国粮油学报,2022,37(4):187−193. [YI C P, LIU S, LIN B P, et al. Research progress on interaction between polyphenols and polysaccharides in cereals[J]. Journal of the Chinese Cereals and Oils Association,2022,37(4):187−193.] doi: 10.3969/j.issn.1003-0174.2022.04.028
YI C P, LIU S, LIN B P, et al. Research progress on interaction between polyphenols and polysaccharides in cereals[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(4): 187−193. doi: 10.3969/j.issn.1003-0174.2022.04.028
|
[8] |
任佳琦, 刘昕, 雷琳, 等. 苹果多酚/果胶相互作用及其对浊汁体系理化特性和稳定性的影响[J]. 食品科学,2021,42(10):14−22. [ZHENG J Q, LIU X, LEI L, et al. Interaction between apple polyphenols and pectin and its effect on the physicochemical properties and stability of turbid juice[J]. Food Science,2021,42(10):14−22.] doi: 10.7506/spkx1002-6630-20200506-058
ZHENG J Q, LIU X, LEI L, et al. Interaction between apple polyphenols and pectin and its effect on the physicochemical properties and stability of turbid juice[J]. Food Science, 2021, 42(10): 14−22. doi: 10.7506/spkx1002-6630-20200506-058
|
[9] |
郑佳. 果酒中蛋白质、多糖、多酚的相互作用及其澄清初步研究[D]. 重庆:重庆大学, 2019. [ZHENG J. Preliminary study on the interaction and clarification of protein, polysaccharide and polyphenol in fruit wine[D]. Chongqing:Chongqing University, 2019.]
ZHENG J. Preliminary study on the interaction and clarification of protein, polysaccharide and polyphenol in fruit wine[D]. Chongqing: Chongqing University, 2019.
|
[10] |
徐仰仓, 赵炳赫, 衣丽霞, 等. 果胶的结构、提取及应用研究进展[J]. 福建技术师范学院学报,2021,39(5):437−442. [XUE Y C, ZHAO B H, YI L X, et al. Research progress on the structure, extraction and application of pectin[J]. Journal of Fujian Polytechnic Normal University,2021,39(5):437−442.] doi: 10.19977/j.cnki.jfpnu.20210068
XUE Y C, ZHAO B H, YI L X, et al. Research progress on the structure, extraction and application of pectin[J]. Journal of Fujian Polytechnic Normal University, 2021, 39(5): 437−442. doi: 10.19977/j.cnki.jfpnu.20210068
|
[11] |
陈芳, 张悦. 果胶作为生物活性成分包埋载体研究进展[J]. 食品研究与开发,2019,40(6):220−224. [CHEN F, ZHANG Y. Advances of pectin as embedded carrier with biological active ingredients[J]. Food Research and Development,2019,40(6):220−224.] doi: 10.3969/j.issn.1005-6521.2019.06.038
CHEN F, ZHANG Y. Advances of pectin as embedded carrier with biological active ingredients[J]. Food Research and Development, 2019, 40(6): 220−224. doi: 10.3969/j.issn.1005-6521.2019.06.038
|
[12] |
任佳琦, 李福香, 雷琳, 等. 原花青素与果胶相互作用对果蔬加工特性的影响[J]. 食品与发酵工业,2019,45(12):83−88. [REN J Q, LI F X, LEI L, et al. Effects of interactions between procyanidins and pectins on processing properties of fruits and vegetables:A review[J]. Food and Fermentation Industries,2019,45(12):83−88.] doi: 10.13995/j.cnki.11-1802/ts.019217
REN J Q, LI F X, LEI L, et al. Effects of interactions between procyanidins and pectins on processing properties of fruits and vegetables: A review[J]. Food and Fermentation Industries, 2019, 45(12): 83−88. doi: 10.13995/j.cnki.11-1802/ts.019217
|
[13] |
KOH J, XU Z, WICKER L. Binding kinetics of blueberry pectin-anthocyanins and stabilization by non-covalent interactions[J]. Food Hydrocolloids,2020,99:105354−105354. doi: 10.1016/j.foodhyd.2019.105354
|
[14] |
王胜, 孟昆, 罗会颖, 等. 果胶甲酯酶的结构与功能研究进展[J]. 生物工程学报,2020,36(6):1021−1030. [WANG S, MENG K, LUO H Y, et al. Research progress in structure and function of pectin methylesterase[J]. Chinese Journal of Biotechnology,2020,36(6):1021−1030.] doi: 10.13345/j.cjb.190418
WANG S, MENG K, LUO H Y, et al. Research progress in structure and function of pectin methylesterase[J]. Chinese Journal of Biotechnology, 2020, 36(6): 1021−1030. doi: 10.13345/j.cjb.190418
|
[15] |
易建勇, 毕金峰, 刘璇, 等. 果胶结构域精细结构研究进展[J]. 食品科学,2020,41(7):292−299. [YI J Y, BI J H, LIU X, et al. A review:Domain fine structure of pectic polysaccharides[J]. Food Science,2020,41(7):292−299.] doi: 10.7506/spkx1002-6630-20190328-356
YI J Y, BI J H, LIU X, et al. A review: Domain fine structure of pectic polysaccharides[J]. Food Science, 2020, 41(7): 292−299. doi: 10.7506/spkx1002-6630-20190328-356
|
[16] |
许馨予, 毛小雨, 杨鹄隽, 等. 天然植物果胶的提取及其在食品工业中的应用现状[J]. 中国食品添加剂,2020,31(8):115−122. [XU X Y, MAO X Y, YANG H J, et al. Extraction of natural plant pectin and its application in food industry[J]. China Food Additives,2020,31(8):115−122.] doi: 10.19804/j.issn1006-2513.2020.08.017
XU X Y, MAO X Y, YANG H J, et al. Extraction of natural plant pectin and its application in food industry[J]. China Food Additives, 2020, 31(8): 115−122. doi: 10.19804/j.issn1006-2513.2020.08.017
|
[17] |
赵凯, 曹雪丹, 方利明. 橘皮果胶在酸性乳饮料中的应用及其展望[J]. 浙江柑橘,2018,35(1):2−4. [ZHAO K, CAO X D, FANG L M. Application and prospect of orange peel pectin in acidic milk beverage[J]. Zhejiang Ganju,2018,35(1):2−4.] doi: 10.13906/j.cnki.zjgj.1009-0584.2018.01.641
ZHAO K, CAO X D, FANG L M. Application and prospect of orange peel pectin in acidic milk beverage[J]. Zhejiang Ganju, 2018, 35(1): 2−4. doi: 10.13906/j.cnki.zjgj.1009-0584.2018.01.641
|
[18] |
邓卓丹. 不同品种芒果果皮中果胶提取及其性质研究[D]. 海口:海南大学, 2020. [DENG Z D. Study on mixed culture fermentation of mango slurry by lactic acid bacteria and yeast[D]. Haikou:Hainan University, 2020.]
DENG Z D. Study on mixed culture fermentation of mango slurry by lactic acid bacteria and yeast[D]. Haikou: Hainan University, 2020.
|
[19] |
王撼辰. 典型化学加工条件对苹果果胶与多酚复配物流变、凝胶及质构特性的影响[D]. 沈阳: 沈阳农业大学, 2019. [WANG Z H. Impacts of typical chemical processing conditions on the rheological, gel and textural properties of apple pectin and apple polyphenols compound[D]. Shenyang:Shenyang Agricultural University, 2019.]
WANG Z H. Impacts of typical chemical processing conditions on the rheological, gel and textural properties of apple pectin and apple polyphenols compound[D]. Shenyang: Shenyang Agricultural University, 2019.
|
[20] |
邬澄飞. 低酯果胶在预防1型糖尿病中的作用及机制研究[D]. 无锡:江南大学, 2020. [WU C F. The role and mechanism of low-methoxyl pectin in the prevention of type 1 diabetes[D]. Wuxi:Jiangnan University, 2020.]
WU C F. The role and mechanism of low-methoxyl pectin in the prevention of type 1 diabetes[D]. Wuxi: Jiangnan University, 2020.
|
[21] |
马新芳, 温自成, 刘志勇. 甜菜干粕果胶对Hg(Ⅱ)的吸附性能研究[C]. 热烈庆祝中国化学会成立80周年——中国化学会第16届反应性高分子学术研讨会论文集, 2012:83−85. [MA X F, WEN Z C, LIU Z Y. Study on the adsorption of Hg(Ⅱ) by pectin from dried beet pulp[C]. Celebrating the 80th Anniversary of the Founding of Chinese Chemical Society-Proceedings of the 16th Chinese Chemical Society Symposium on Reactive Polymers, 2012:83−85.]
MA X F, WEN Z C, LIU Z Y. Study on the adsorption of Hg(Ⅱ) by pectin from dried beet pulp[C]. Celebrating the 80th Anniversary of the Founding of Chinese Chemical Society-Proceedings of the 16th Chinese Chemical Society Symposium on Reactive Polymers, 2012: 83−85.
|
[22] |
FRAGA C G, GALLEANO M, VERSTRAETEN S V, et al. Basic biochemical mechanisms behind the health benefits of polyphenols[J]. Molecular Aspects of Medicine,2010,31(6):435−445. doi: 10.1016/j.mam.2010.09.006
|
[23] |
王晓燕. 多酚对荞麦蛋白物化、营养及结构性质的影响[D]. 广州:华南理工大学, 2010. [WANG X Y. The effects of polyphenols on physicochemical, nutritional and structural properties of buckwheat protein[D]. Guangzhou:South China University of Technology, 2010.]
WANG X Y. The effects of polyphenols on physicochemical, nutritional and structural properties of buckwheat protein[D]. Guangzhou: South China University of Technology, 2010.
|
[24] |
程周周. 基于多酚—蛋白分子互作的低敏牛乳蛋白体系构建及机制研究[D]. 杭州:浙江工商大学, 2022. [CHENG Z Z. Construction and mechanism of hypoallergenic milk protein system based on polyphenol-protein molecular interaction[D]. Hangzhou:Zhejiang Gongshang University, 2022.]
CHENG Z Z. Construction and mechanism of hypoallergenic milk protein system based on polyphenol-protein molecular interaction[D]. Hangzhou: Zhejiang Gongshang University, 2022.
|
[25] |
LIU X, LE BOURVELLEC C, RENARD C M G C. Interactions between cell wall polysaccharides and polyphenols:Effect of molecular internal structure[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(6):3574−3617. doi: 10.1111/1541-4337.12632
|
[26] |
OLAGARAY K E, BRADFORD B J. Plant flavonoids to improve productivity of ruminants - A review[J]. Animal Feed Science and Technology,2019,251:21−36. doi: 10.1016/j.anifeedsci.2019.02.004
|
[27] |
任顺成, 陈佳乐, 陶华. 多酚对淀粉慢消化作用及其生物利用率研究进展[J]. 河南工业大学学报(自然科学版),2022,43(3):133−140. [REN S C, CHEN J L, TAO H. Research progress on the effect of polyphenols on slow digestion of starch and its bio availability[J]. Journal of Henan University of Technology(Natural Science Edition),2022,43(3):133−140.]
REN S C, CHEN J L, TAO H. Research progress on the effect of polyphenols on slow digestion of starch and its bio availability[J]. Journal of Henan University of Technology(Natural Science Edition), 2022, 43(3): 133−140.
|
[28] |
陈彩薇, 吴晖, 赖富饶, 等. 米糠中不同存在形态酚类物质的抗氧化活性研究[J]. 现代食品科技,2015,31(2):42−46,13. [CHEN C W, WU H, LAI F R, et al. Study on the antioxidant activity of different forms of phenolic compounds in rice bran[J]. Modern Food Science and Technology,2015,31(2):42−46,13.] doi: 10.13982/j.mfst.1673-9078.2015.2.008
CHEN C W, WU H, LAI F R, et al. Study on the antioxidant activity of different forms of phenolic compounds in rice bran[J]. Modern Food Science and Technology, 2015, 31(2): 42−46,13. doi: 10.13982/j.mfst.1673-9078.2015.2.008
|
[29] |
WANG B N, LIU H F, BIN ZHENG J, et al. Distribution of phenolic acids in different tissues of jujube and their antioxidant activity[J]. Journal of Agricultural and Food Chemistry,2011,59(4):1288−1292. doi: 10.1021/jf103982q
|
[30] |
王丽颖, 李福香, 杨雅轩, 等. 多糖与多酚相互作用机制及其对多酚特性的影响研究进展[J]. 食品科学,2017,38(11):276−282. [WANG L Y, LI F X, YANG Y X, et al. Interaction mechanism between polyphenols and polysaccharides and effect on polyphenolic properties:A review[J]. Food Science,2017,38(11):276−282.] doi: 10.7506/spkx1002-6630-201711044
WANG L Y, LI F X, YANG Y X, et al. Interaction mechanism between polyphenols and polysaccharides and effect on polyphenolic properties: A review[J]. Food Science, 2017, 38(11): 276−282. doi: 10.7506/spkx1002-6630-201711044
|
[31] |
JAKOBEK L, MATIC P. Non-covalent dietary fiber-polyphenol interactions and their influence on polyphenol bioaccessibility[J]. Trends in Food Science & Technology,2019,83:235−247.
|
[32] |
田子昂, 郑丽丽, 艾斌凌, 等. 蛋白质-多酚-淀粉三元体系的相互作用与功能影响研究进展[J]. 食品科学,2023,44(11):348−355. [TIAN Z A, ZHENG L L, AI B L, et al. Research progress on the interaction and functional effect of protein - polyphenol - starch ternary system[J]. Food Science,2023,44(11):348−355.] doi: 10.7506/spkx1002-6630-20220506-059
TIAN Z A, ZHENG L L, AI B L, et al. Research progress on the interaction and functional effect of protein - polyphenol - starch ternary system[J]. Food Science, 2023, 44(11): 348−355. doi: 10.7506/spkx1002-6630-20220506-059
|
[33] |
DOMINGUEZ AVILA J A, VILLEGAS OCHOA M A, ALVAREZ PARRILLA E, et al. Interactions between four common plant-derived phenolic acids and pectin, and its effect on antioxidant capacity[J]. Journal of Food Measurement and Characterization,2018,12(2):992−1004. doi: 10.1007/s11694-017-9714-z
|
[34] |
王玥. 柿果胶与单宁互作及其对柿果涩味的影响[D]. 武汉:华中农业大学, 2019. [WANG Y. The interaction between persimmon pectin and persimmon tannin and its effect on the astringency of persimmon[D]. Wuhan:Huazhong Agriculture University, 2019.]
WANG Y. The interaction between persimmon pectin and persimmon tannin and its effect on the astringency of persimmon[D]. Wuhan: Huazhong Agriculture University, 2019.
|
[35] |
LIU D J, LOPEZ-SANCHEZ P, MARTINEZ-SANZ M, et al. Adsorption isotherm studies on the interaction between polyphenols and apple cell walls:Effects of variety, heating and drying[J]. Food Chemistry,2019,282:58−66. doi: 10.1016/j.foodchem.2018.12.098
|
[36] |
LIU X, RENARD C M G C, ROLLAND-SABATE A, et al. Exploring interactions between pectins and procyanidins:Structure-function relationships[J]. Food Hydrocolloids,2021,113:106498. doi: 10.1016/j.foodhyd.2020.106498
|
[37] |
WATRELOT A A, LE BOURVELLEC C, IMBERTY A, et al. Interactions between pectic compounds and procyanidins are influenced by methylation degree and chain length[J]. Biomacromolecules,2013,14(3):709−718. doi: 10.1021/bm301796y
|
[38] |
LIANG T, JIAO S, JING P. Molecular interaction between pectin and catechin/procyanidin in simulative juice model:Insights from spectroscopic, morphology, and antioxidant activity[J]. Journal of Food Science,2021,86(6):2445−2456. doi: 10.1111/1750-3841.15743
|
[39] |
FERNANDES P A R, LE BOURVELLEC C, RENARD C M G C, et al. Interactions of arabinan-rich pectic polysaccharides with polyphenols[J]. Carbohydrate Polymers,2020,230:115644. doi: 10.1016/j.carbpol.2019.115644
|
[40] |
MAMET T, YAO F, LI K-K, et al. Persimmon tannins enhance the gel properties of high and low methoxyl pectin[J]. LWT-Food Science and Technology,2017,86:594−602. doi: 10.1016/j.lwt.2017.08.050
|
[41] |
LIN Z, FISCHER J, WICKER L. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin[J]. Food Chemistry,2016,194:986−993. doi: 10.1016/j.foodchem.2015.08.113
|
[42] |
ZHANG D, ZHU J, YE F, et al. Non-covalent interaction between ferulic acid and arabinan-rich pectic polysaccharide from rapeseed meal[J]. International Journal of Biological Macromolecules,2017,103:307−315. doi: 10.1016/j.ijbiomac.2017.05.053
|
[43] |
LE BOURVELLEC C, GUYOT S, RENARD C. Non-covalent interaction between procyanidins and apple cell wall material Part I. Effect of some environmental parameters[J]. Biochimica Et Biophysica Acta-General Subjects,2004,1672(3):192−202. doi: 10.1016/j.bbagen.2004.04.001
|
[44] |
ZHANG X, LI M, ZHAO W, et al. Hawthorn juice simulation system for pectin and polyphenol adsorption behavior:Kinetic modeling properties and identification of the interaction mechanism[J]. Foods (Basel, Switzerland),2022,11(18):2813.
|
[45] |
托尔坤·买买提. 柿单宁与果胶相互作用研究[D]. 武汉:华中农业大学, 2017. [TORKUN·Mamet. Study on the interaction between persimmon tannins and pectins[D]. Wuhan:Huazhong Agriculture University, 2017.]
TORKUN·Mamet. Study on the interaction between persimmon tannins and pectins[D]. Wuhan: Huazhong Agriculture University, 2017.
|
[46] |
CHYLEK P. Absorption and scattering of light by small particles. By C. F. Bohren and d. R. Huffman[J]. Applied Optics,1986,25(18):3166.
|
[47] |
MAMET T, GE Z-Z, ZHANG Y, et al. Interactions between highly galloylated persimmon tannins and pectins[J]. International Journal of Biological Macromolecules,2018,106:410−417. doi: 10.1016/j.ijbiomac.2017.08.039
|
[48] |
陈超, 樊海丽, 蔡志威, 等. 扫描电子显微镜在缓释微球制剂表征中的应用进展[J]. 分析测试技术与仪器,2022,28(2):132−138. [CHEN C, FAN H L, CAI Z W, et al. Progress in characterization of controlledrelease microspheres using scanning electron microscope[J]. Analysis and Testing Technology and Instruments,2022,28(2):132−138.] doi: 10.16495/j.1006-3757.2022.02.004
CHEN C, FAN H L, CAI Z W, et al. Progress in characterization of controlledrelease microspheres using scanning electron microscope[J]. Analysis and Testing Technology and Instruments, 2022, 28(2): 132−138. doi: 10.16495/j.1006-3757.2022.02.004
|
[49] |
LI S, LI J, ZHU Z, et al. Soluble dietary fiber and polyphenol complex in lotus root:Preparation, interaction and identification[J]. Food Chemistry,2020,314:126219. doi: 10.1016/j.foodchem.2020.126219
|
[50] |
崔灵敏, 谢笔钧, 孙智达. 果胶与莲原花青素复合物理化性质及体外抑菌活性研究[J]. 食品工业科技,2020,41(16):60−66,80. [CUI L M, XIE B Y, SUN Z D. Physical and chemical properties of pectin-proanthocyanidin complex and its antibacterial activity in vitro[J]. Science and Technology of Food Industry,2020,41(16):60−66,80.] doi: 10.13386/j.issn1002-0306.2020.16.011
CUI L M, XIE B Y, SUN Z D. Physical and chemical properties of pectin-proanthocyanidin complex and its antibacterial activity in vitro[J]. Science and Technology of Food Industry, 2020, 41(16): 60−66,80. doi: 10.13386/j.issn1002-0306.2020.16.011
|
[51] |
RIOU V, VERNHET A, DOCO T, et al. Aggregation of grape seed tannins in model wine - effect of wine polysaccharides[J]. Food Hydrocolloids,2002,16(1):17−23. doi: 10.1016/S0268-005X(01)00034-0
|
[52] |
WU Z, LI H, MING J, et al. Optimization of adsorption of tea polyphenols into oat beta-glucan using response surface methodology[J]. Journal of Agricultural and Food Chemistry,2011,59(1):378−385. doi: 10.1021/jf103003q
|
[53] |
PHAN A D T, FLANAGAN B M, D'ARCY B R, et al. Binding selectivity of dietary polyphenols to different plant cell wall components:Quantification and mechanism[J]. Food Chemistry,2017,233:216−227. doi: 10.1016/j.foodchem.2017.04.115
|
[54] |
SYMONEAUX R, CHOLLET S, PATRON C, et al. Prediction of sensory characteristics of cider according to their biochemical composition:Use of a central composite design and external validation by cider professionals[J]. LWT-Food Science and Technology,2015,61(1):63−69. doi: 10.1016/j.lwt.2014.11.030
|
[55] |
TROSZYNSKA A, NAROLEWSKA O, ROBREDO S, et al. The effect of polysaccharides on the astringency induced by phenolic compounds[J]. Food Quality and Preference,2010,21(5):463−469. doi: 10.1016/j.foodqual.2009.12.005
|
[56] |
HAGHIGHI M, YARMAND M S, EMAM-DJOMEH Z, et al. Design and fabrication of pectin-coated nanoliposomal delivery systems for a bioactive polyphenolic:Phloridzin[J]. International Journal of Biological Macromolecules,2018,112:626−637. doi: 10.1016/j.ijbiomac.2018.01.108
|
[57] |
白海娜, 王振宇, 李辉, 等. 五种浆果多酚与黑木耳多糖复合物的辐射防护作用[J]. 食品工业科技,2013,34(16):117−120,124. [BAI H N, WANG Z Y, LI H, et al. Effect of five berry polyphenols and auricularia auricular polysaccharides combination on radiation protection[J]. Science and Technology of Food Industry,2013,34(16):117−120,124.] doi: 10.13386/j.issn1002-0306.2013.16.026
BAI H N, WANG Z Y, LI H, et al. Effect of five berry polyphenols and auricularia auricular polysaccharides combination on radiation protection[J]. Science and Technology of Food Industry, 2013, 34(16): 117−120,124. doi: 10.13386/j.issn1002-0306.2013.16.026
|
[58] |
白海娜. 黑木耳多糖AAP-4与原花青素对辐射诱导氧化损伤协同防护作用[D]. 哈尔滨:哈尔滨工业大学, 2016. [BAI H N. Synergistic protective effect on radiation induced oxidative damage of polysaccharides AAP-4 form auricularia auricular with procyanidins[D]. Harbin:Harbin Institute of Technology, 2016.]
BAI H N. Synergistic protective effect on radiation induced oxidative damage of polysaccharides AAP-4 form auricularia auricular with procyanidins[D]. Harbin: Harbin Institute of Technology, 2016.
|
[59] |
唐玉妹. 竹笋膳食纤维-多酚复合物的构建及其性能的研究[D]. 长沙:中南林业科技大学, 2022. [TANG Y M. The study on the construction and performance of bamboo shoots dietary fibers-polyphenol complex[D]. Changsha:Central South University of Forestry and Technology, 2022.]
TANG Y M. The study on the construction and performance of bamboo shoots dietary fibers-polyphenol complex[D]. Changsha: Central South University of Forestry and Technology, 2022.
|
[60] |
LE BOURVELLEC C, GOUBLE B, BUREAU S, et al. Pink discoloration of canned pears:Role of procyanidin chemical depolymerization and procyanidin/cell wall interactions[J]. Journal of Agricultural and Food Chemistry,2013,61(27):6679−6692. doi: 10.1021/jf4005548
|
[61] |
LE BOURVELLEC C, BOUCHET B, RENARD C. Non-covalent interaction between procyanidins and apple cell wall material. Part III:Study on model polysaccharides[J]. Biochimica Et Biophysica Acta-General Subjects,2005,1725(1):10−18. doi: 10.1016/j.bbagen.2005.06.004
|
[62] |
刘夫国. 蛋白质-多酚-碳水化合物共价复合物制备及其对功能因子稳态作用[D]. 北京:中国农业大学, 2017. [LIU F G. Fabrication of protein-polyphenol-carbohydrate conjugates and their stabilization effect on functional components[D]. Beijing:China Agricultural University, 2017.]
LIU F G. Fabrication of protein-polyphenol-carbohydrate conjugates and their stabilization effect on functional components[D]. Beijing: China Agricultural University, 2017.
|
[63] |
刘甜甜, 吴晓娟, 吴伟. 多酚-膳食纤维相互作用及其影响多酚生物利用率研究进展[J]. 中国粮油学报,2022,37(7):179−187. [LIU T T, WU X J, WU W. Research progress of polyphenol-dietary fiber interaction and its effects on the bioavailability of polyphenols[J]. Journal of the Chinese Cereals and Oils Association,2022,37(7):179−187.] doi: 10.3969/j.issn.1003-0174.2022.07.026
LIU T T, WU X J, WU W. Research progress of polyphenol-dietary fiber interaction and its effects on the bioavailability of polyphenols[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(7): 179−187. doi: 10.3969/j.issn.1003-0174.2022.07.026
|
[64] |
易建勇, 赵圆圆, 毕金峰, 等. 细胞壁多糖与酚类物质相互作用研究进展[J]. 食品科学,2020,41(9):269−275. [YI J Y, ZHAO Y Y, BI J F, et al. A review of interactions between cell wall polysaccharides and polyphenols in fruits and vegetables[J]. Food Science,2020,41(9):269−275.] doi: 10.7506/spkx1002-6630-20190303-021
YI J Y, ZHAO Y Y, BI J F, et al. A review of interactions between cell wall polysaccharides and polyphenols in fruits and vegetables[J]. Food Science, 2020, 41(9): 269−275. doi: 10.7506/spkx1002-6630-20190303-021
|
[65] |
NAGAR E E, BERENSHTEIN L, KATZ I H, et al. The impact of chemical structure on polyphenol bioaccessibility, as a function of processing, cell wall material and pH:A model system[J]. Journal of Food Engineering,2021,289:110304. doi: 10.1016/j.jfoodeng.2020.110304
|
[66] |
KOH J, XU Z, WICKER L. Blueberry pectin and increased anthocyanins stability under in vitro digestion[J]. Food Chemistry,2020,302:125343. doi: 10.1016/j.foodchem.2019.125343
|