Citation: | HUANG Jiahui, ZHAO Lei, ZHU Jie, et al. Nano-starch and Its Structural Properties Prepared from Enzymolysis-Dynamic High Pressure Micro-fluidization[J]. Science and Technology of Food Industry, 2024, 45(8): 127−133. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060152. |
[1] |
张旭鑫, 张书艳, 李琳, 等. 香草醛调控蜡质玉米淀粉-壳聚糖交联薄膜的结构和性能[J]. 现代食品科技,2022,38(4):99−105. [ZHANG X X, ZHANG S Y, LI L, et al. Structure and property of waxy starch-chitosan crosslinking films regulated by vanillin[J]. Modern Food Science & Technology,2022,38(4):99−105.]
|
[2] |
FANG C L, HUANG J R, YANG Q, et al. Adsorption capacity and cold-water solubility of honeycomb-like potato starch granule[J]. International Journal of Biological Macromolecules,2020,147:741−749. doi: 10.1016/j.ijbiomac.2020.01.224
|
[3] |
刘璐婕, 黄立新, 张彩虹, 等. 纳米淀粉的制备、性质及应用的研究进展[J]. 材料导报,2020,34(19):19027−19033. [LIU L J, HUANG L X, ZHANG C H, et al. Research progress in preparation, properties and application of nano- starch[J]. Materials Reports,2020,34(19):19027−19033.] doi: 10.11896/cldb.19040230
|
[4] |
GUO Y B, QIAO D L, ZHAO S M, et al. Starch-based materials encapsulating food ingredients:Recent advances in fabrication methods and applications[J]. Carbohydrate Polymers,2021,270:118358. doi: 10.1016/j.carbpol.2021.118358
|
[5] |
齐凤敏, 王来忠, 张佳佳, 等. 不同均质方式对红花籽油O/W乳液乳化效果的影响[J]. 食品工业,2020,41(12):8−11. [QI F M, WANG L Z, ZHANG J J, et al. Effects of different homogenization methods on O/W emulsion emulsification of safflower seed oil[J]. The Food Industry,2020,41(12):8−11.]
|
[6] |
LE CORRE D, BRAS J, DUFRESNE A. Starch nanoparticles:A review[J]. Biomacromolecules,2010,11(5):1139−1153. doi: 10.1021/bm901428y
|
[7] |
曹梦梦, 刘一鲲, 陈兴, 等. 动态高压微射流技术制备乳液运载体的研究进展[J]. 食品工业科技,2022,43(18):474−482. [CAO M M, LIU Y K, CHEN X, et al. Research progress on emulsion-based delivery systems produced from dynamic high pressure microfluidization[J]. Science and Technology of Food Industry,2022,43(18):474−482.]
|
[8] |
涂宗财, 王强, 张博, 等. 动态超高压微射流对蜡质玉米淀粉颗粒结构的影响[J]. 食品与发酵工业,2009,35(11):1−4. [TU Z C, WANG Q, ZHANG B, et al. Effects of dynamic high-pressure microfluidization on granular structure of waxy maize starch[J]. Food and Fermentation Industries,2009,35(11):1−4.]
|
[9] |
陈璐璐, 玄晨宇, 代养勇, 等. 高压微射流处理对马铃薯淀粉结构和糊特性的影响[J]. 食品研究与开发,2021,42(11):17−23. [CHEN L L, XUAN C Y, DAI Y Y, et al. Effect of high-pressure microfluidization treatment on the structure and paste properties of potato starch[J]. Food Research and Development,2021,42(11):17−23.]
|
[10] |
TU Z C, YIN Y B, WANG H, et al. Effect of dynamic high-pressure microfluidization on the morphology characteristics and physicochemical properties of maize amylose[J]. Starch-Stärke,2013,65(5-6):390−397.
|
[11] |
LIU D G, WU Q L, CHEN H H, et al. Transitional properties of starch colloid with particle size reduction from micro-to anometer[J]. J Colloid Interface Sci,2009,339(1):117−124. doi: 10.1016/j.jcis.2009.07.035
|
[12] |
KASEMWONG K, RUKTANONCHAI U R, SRINUANCHAI W, et al. Effect of high-pressure microfluidization on the structure of cassava starch granule[J]. Starch-Stärke,2011,63(3):160−170.
|
[13] |
BAJAJ R, SINGH N, KAUR A, et al. Structural, morphological, functional and digestibility properties of starches from cereals, tubers and legumes:A comparative study[J]. Journal of Food Science and Technology,2018,55(9):3799−3808. doi: 10.1007/s13197-018-3342-4
|
[14] |
LI W H, ZHANG F S, LIU P L, et al. Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean ( Vigna radiata L.) starch[J]. Journal of Food Engineering,2010,103(4):388−393.
|
[15] |
XU J B, MA Z, REN N M, et al. Understanding the multi-scale structural changes in starch and its physicochemical properties during the processing of chickpea, navy bean, and yellow field pea seeds[J]. Food Chemistry,2019,289:582−590. doi: 10.1016/j.foodchem.2019.03.093
|
[16] |
SUN Q J, LI G H, DAI L, et al. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation[J]. Food Chemistry,2014,162:223−228. doi: 10.1016/j.foodchem.2014.04.068
|
[17] |
肖云鹏, 余世锋. 酶解处理对糯性玉米淀粉多层次结构特性及热性质的影响[J]. 食品科技,2019,44(8):248−253. [XIAO Y P, YU S F. Effects of enzymolysis treatment on the microstructure and thermal properties of waxy corn starch granule[J]. Food Science and Technology,2019,44(8):248−253.]
|
[18] |
NIU W, PU H Y, LIU G M, et al. Effect of repeated heat-moisture treatments on the structural characteristics of nanocrystals from waxy maize starch[J]. International Journal of Biological Macromolecules,2020,158:732−739. doi: 10.1016/j.ijbiomac.2020.04.236
|
[19] |
张博. 动态超高压微射流技术对蜡质淀粉改性的影响及其机理初探[D]. 南昌:南昌大学, 2008. [ZHANG B. Influence of the high pressure microfluidization on the functional properties of waxy starch and its mechanism study[D]. Nanchang:Nanchang University, 2008.]
ZHANG B. Influence of the high pressure microfluidization on the functional properties of waxy starch and its mechanism study[D]. Nanchang: Nanchang University, 2008.
|
[20] |
张旭鑫, 张书艳, 赵雷, 等. 纳米淀粉对含香茅醇马铃薯淀粉-壳聚糖复合膜材多尺度结构和热稳定性的影响[J]. 轻工学报,2023,38(1):27−33. [ZHANG X X, ZHANG S Y, ZHAO L, et al. Effects of nano-starch on the multiscale structure and thermal stability of potato starch-chitosan composites containing citronellol[J]. Journal of Light Industry,2023,38(1):27−33.]
|
[21] |
RIVERA-CORONA J L, RODRÍGUEZ-GONZÁLEZ F, RENDÓN-VILLALOBOS R, et al. Thermal, structural and rheological properties of sorghum starch with cactus mucilage addition[J]. LWT-Food Science and Technology,2014,59(2):806−812. doi: 10.1016/j.lwt.2014.06.011
|
[22] |
RINDLAVA Å, HULLEMAN S H D, GATENHOLMA P. Formation of starch films with varying crystallinity[J]. Carbohydrate Polymers,1997,34(1):25−30.
|
[23] |
李欣欣. 蜡质玉米变性淀粉及其应用研究[D]. 长春:吉林大学, 2013. [LI X X. Research on preparation and application of modified waxy corn starch[D]. Changchun:Jilin Universitysity, 2013.]
LI X X. Research on preparation and application of modified waxy corn starch[D]. Changchun: Jilin Universitysity, 2013.
|
[24] |
MA Z, BOYE J I. Research advances on structural characterization of resistant starch and its structure-physiological function relationship:A review[J]. Critical Reviews in Food Science and Nutrition,2018,58(7):1059−1083.
|
[25] |
HUANG T T, ZHOU D N, JIN Z Y, et al. Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch[J]. Food Hydrocolloids,2016,54:202−210. doi: 10.1016/j.foodhyd.2015.10.002
|
[26] |
ZHANG Y Y, LI G P, WU Y W, et al. Influence of amylose on the pasting and gel texture properties of chestnut starch during thermal processing[J]. Food Chemistry,2019,294:378−383. doi: 10.1016/j.foodchem.2019.05.070
|
[27] |
姜岁岁, 杨洁, 常然然, 等. 短直链淀粉纳米颗粒的制备及其表征[J]. 现代食品科技,2016,32(9):254−259. [JIANG S S, YANG J, CHANG R R, et al. Preparation and characterization of starch nanoparticles prepared using short glucan chains debranched for different times[J]. Modern Food Science & Technology,2016,32(9):254−259.]
|
[28] |
PINKAEW H, WANG Y, NAIVIKUL O. Impact of pre-germination on amylopectin molecular structures, crystallinity, and thermal properties of pre-germinated brown rice starches[J]. Journal of Cereal Science,2017,73:151−157. doi: 10.1016/j.jcs.2016.12.013
|
[29] |
方晨璐. 三种形状无定形淀粉的制备、特征性质及分子结构研究[D]. 西安:陕西科技大学, 2020. [FANG C L. Preparation, characteristic properties and molecular structures of three amorphous starches of different shapes[D]. Xi'an:Shaanxi University of Science & Technology, 2020.]
FANG C L. Preparation, characteristic properties and molecular structures of three amorphous starches of different shapes[D]. Xi'an: Shaanxi University of Science & Technology, 2020.
|
[30] |
WEI B X, CAI C X, XU B G, et al. Disruption and molecule degradation of waxy maize starch granules during high pressure homogenization process[J]. Food Chemistry,2018,240:165−173. doi: 10.1016/j.foodchem.2017.07.078
|
[31] |
HAN J A, LIM S T. Structural changes of corn starches by heating and stirring in DMSO measured by SEC-MALLS-RI system[J]. Carbohydrate Polymers,2003,55(3):265−272.
|
[32] |
LIN Q Z, JI N, LI M, et al. Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films[J]. Food Hydrocolloids,2020,104:105760. doi: 10.1016/j.foodhyd.2020.105760
|