KANG Yao, TANG Yuan, ZHANG Dongxing, et al. Research Progress on the Mechanism of Action of Medicinal and Edible Homologous Substances in the Prevention and Treatment of Alzheimer's Disease[J]. Science and Technology of Food Industry, 2024, 45(12): 18−27. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090179.
Citation: KANG Yao, TANG Yuan, ZHANG Dongxing, et al. Research Progress on the Mechanism of Action of Medicinal and Edible Homologous Substances in the Prevention and Treatment of Alzheimer's Disease[J]. Science and Technology of Food Industry, 2024, 45(12): 18−27. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090179.

Research Progress on the Mechanism of Action of Medicinal and Edible Homologous Substances in the Prevention and Treatment of Alzheimer's Disease

More Information
  • Received Date: September 17, 2023
  • Available Online: April 15, 2024
  • Alzheimer's disease (AD) is a progressive neurodegenerative disease with insidious onset, commonly seen in the elderly and with increasing incidence, for which there is still no effective treatment. Medicinal and edible homologous substances refer to substances that are both food and traditional Chinese medicine, and have received widespread attention due to their safety and good therapeutic and health effects. This paper describes the pathogenesis of AD, and summarizes the anti-AD mechanism of medicinal and edible homologous substances from the aspects of slowing down the deposition of β-amyloid, inhibiting the over-phosphorylation of Tau protein, improving the cholinergic system, antioxidant, anti-inflammatory, and protection of neurons and synapses, so as to provide references for the development and application of medicinal and edible homologous substances products.
  • loading
  • [1]
    Alzheimer’s Disease International. World Alzheimer Report 2019:Attitudes to dementia[R/OL]. 2019-09-20. https://www.alzint.org/resource/world-alzheimer-report-2019/.
    [2]
    SONG Y, WANG J. Overview of Chinese research on senile dementia in mainland China[J]. Ageing Research Reviews,2010,9:S6−S12. doi: 10.1016/j.arr.2010.08.007
    [3]
    中国老龄协会[EB/OL]. /2023-07-17. https://www.cncaprc.gov.cn/llxw/192277.jhtml. [China National Committee on Ageing[EB/OL]. /2023-07-17. https://www.cncaprc.gov.cn/llxw/192277.jhtml.]

    China National Committee on Ageing[EB/OL]. /2023-07-17. https://www.cncaprc.gov.cn/llxw/192277.jhtml.
    [4]
    DETURE M A, DICKSON D W. The neuropathological diagnosis of Alzheimer’s disease[J]. Molecular Neurodegeneration,2019,14(1):14−32. doi: 10.1186/s13024-019-0313-9
    [5]
    CALSOLARO V, EDISON P. Neuroinflammation in Alzheimer’s disease:Current evidence and future directions[J]. Alzheimer’s & Dementia,2016,12(6):719−732.
    [6]
    BRIGGS C A, CHAKROBORTY S, STUTZMANN G E. Emerging pathways driving early synaptic pathology in Alzheimer’s disease[J]. Biochemical and Biophysical Research Communications,2017,483(4):988−997. doi: 10.1016/j.bbrc.2016.09.088
    [7]
    SAVELIEFF M G, NAM G, KANG J, et al. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade[J]. Chemical Reviews,2019,119(2):1221−1322. doi: 10.1021/acs.chemrev.8b00138
    [8]
    DAS T K, JANA P, CHAKRABARTI S K, et al. Curcumin downregulates GSK3 and Cdk5 in scopolamine-induced Alzheimer’s disease rats abrogating Aβ40/42 and Tau hyperphosphorylation[J]. Journal of Alzheimer’s Disease Reports,2019,3(1):257−267. doi: 10.3233/ADR-190135
    [9]
    GONZÁLEZ-GRANILLO A E, GNECCO D, DÍAZ A, et al. Curcumin induces cortico-hippocampal neuronal reshaping and memory improvements in aged mice[J]. Journal of Chemical Neuroanatomy,2022,121:102091. doi: 10.1016/j.jchemneu.2022.102091
    [10]
    ZHANG H, SU Y, SUN Z, et al. Ginsenoside Rg1 alleviates Aβ deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice[J]. Journal of Ginseng Research,2021,45(6):665−675. doi: 10.1016/j.jgr.2021.03.003
    [11]
    杨淑达, 于浩飞, 张兰春, 等. 人参皂苷Rb1对Aβ1-42导致的Tau蛋白异常磷酸化的影响[J]. 天然产物研究与开发,2020,32(7):1143−1147. [YANG S D, YU H F, ZHANG L C, et al. The effect of ginsenoside Rb1 on abnormal phosphory-lation of Tau induced by Aβ1-42[J]. Natural Product Research and Development,2020,32(7):1143−1147.]

    YANG S D, YU H F, ZHANG L C, et al. The effect of ginsenoside Rb1 on abnormal phosphory-lation of Tau induced by Aβ1-42[J]. Natural Product Research and Development, 2020, 32(7): 1143−1147.
    [12]
    KIM M S, YU J M, KIM H J, et al. Ginsenoside Re and Rd enhance the expression of cholinergic markers and neuronal differentiation in neuro-2a cells[J]. Biological and Pharmaceutical Bulletin,2014,37(5):826−833. doi: 10.1248/bpb.b14-00011
    [13]
    SHIN S J, NAM Y, PARK Y H, et al. Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer’s disease[J]. Free Radical Biology and Medicine,2021,164:233−248. doi: 10.1016/j.freeradbiomed.2020.12.454
    [14]
    WU Z, HUANG J, BAI X, et al. Ginsenoside-Rg1 mitigates cardiac arrest-induced cognitive damage by modulating neuroinflammation and hippocampal plasticity[J]. European Journal of Pharmacology,2023,938:175431. doi: 10.1016/j.ejphar.2022.175431
    [15]
    GOVINDARAJU T, RAJASEKHAR K, CHAKRABARTI M. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease[J]. Chemical Communications,2015,51(70):13434−13450. doi: 10.1039/C5CC05264E
    [16]
    SENGUPTA U, NILSON A N, KAYED R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy[J]. EBio Medicine,2016,6:42−49. doi: 10.1016/j.ebiom.2016.03.035
    [17]
    TOMIC J L, PENSALFINI A, HEAD E, et al. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction[J]. Neurobiology of Disease,2009,35(3):352−358. doi: 10.1016/j.nbd.2009.05.024
    [18]
    MUIRHEAD K E A, BORGER E, AITKEN L, et al. The consequences of mitochondrial amyloid β-peptide in Alzheimer’s disease[J]. Biochemical Journal,2010,426(3):255−270. doi: 10.1042/BJ20091941
    [19]
    KIM J, ONSTEAD L, RANDLE S, et al. Aβ40 inhibits amyloid deposition in vivo[J]. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience,2007,27:627−633. doi: 10.1523/JNEUROSCI.4849-06.2007
    [20]
    ASHRAFIAN H, ZADEH E H, KHAN R H. Review on Alzheimer’s disease:Inhibition of amyloid beta and tau tangle formation[J]. International Journal of Biological Macromolecules,2021,167:382−394. doi: 10.1016/j.ijbiomac.2020.11.192
    [21]
    GUGLIELMOTTO M, GILIBERTO L, TAMAGNO E, et al. Oxidative stress mediates the pathogenic effect of different Alzheimer’s disease risk factors[J]. Frontiers in Aging Neuroscience,2010,2:3.
    [22]
    TAIPA R, NEVES S P D, SOUSA A L, et al. Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive decline[J]. Neurobiology of Aging,2019,76:125−132. doi: 10.1016/j.neurobiolaging.2018.12.019
    [23]
    TAQUI R, DEBNATH M, AHMED S, et al. Advances on plant extracts and phytocompounds with acetylcholinesterase inhibition activity for possible treatment of Alzheimer’s disease[J]. Phytomedicine Plus,2022,2(1):100184. doi: 10.1016/j.phyplu.2021.100184
    [24]
    CARVALHO C, MOREIRA P I. Metabolic defects shared by Alzheimer’s disease and diabetes:A focus on mitochondria[J]. Current Opinion in Neurobiology,2023,79:102694. doi: 10.1016/j.conb.2023.102694
    [25]
    MAZZARO N, BARINI E, SPILLANTINI M G, et al. Tau-driven neuronal and neurotrophic dysfunction in a mouse model of early tauopathy[J]. The Journal of Neuroscience,2016,36(7):2086−2100. doi: 10.1523/JNEUROSCI.0774-15.2016
    [26]
    JU Y, TAM K. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease[J]. Neural Regeneration Research,2022,17(3):543−549. doi: 10.4103/1673-5374.320970
    [27]
    MAPHIS N, XU G, KOKIKO-COCHRAN O N, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain[J]. Brain,2015,138(6):1738−1755. doi: 10.1093/brain/awv081
    [28]
    AULD D S, KAR S, RÉMI QUIRION. β-Amyloid peptides as direct cholinergic neuromodulators:A missing link?[J]. Trends in Neurosciences,1998,21(1):43−49. doi: 10.1016/S0166-2236(97)01144-2
    [29]
    MESULAM M. The cholinergic lesion of Alzheimer’s disease:Pivotal factor or side show?[J]. Learning & Memory,2004,11(1):43−49.
    [30]
    TERRY A V, BUCCAFUSCO J J. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits:Recent challenges and their implications for novel drug development[J]. Journal of Pharmacology and Experimental Therapeutics,2003,306(3):821−827. doi: 10.1124/jpet.102.041616
    [31]
    BOXER A L, SPERLING R. Accelerating Alzheimer’s therapeutic development:The past and future of clinical trials[J]. Cell,2023,186(22):4757−4772. doi: 10.1016/j.cell.2023.09.023
    [32]
    BELHADJ SLIMEN I, NAJAR T, GHRAM A, et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review[J]. International Journal of Hyperthermia,2014,30(7):513−523. doi: 10.3109/02656736.2014.971446
    [33]
    GANDHI S, ABRAMOV A Y. Mechanism of oxidative stress in neurodegeneration[J]. Oxidative Medicine and Cellular Longevity,2012,2012:1−11.
    [34]
    LATIF F, IMRAN M. Antioxidants-a combat against oxidative stress in dementia[J]. Annals of Medicine & Surgery,2022,82:104632.
    [35]
    ABRAMOV A Y, BEREZHNOV A V, FEDOTOVA E I, et al. Interaction of misfolded proteins and mitochondria in neurodegenerative disorders[J]. Biochemical Society Transactions,2017,45(4):1025−1033. doi: 10.1042/BST20170024
    [36]
    SHANG F, TAYLOR A. Ubiquitin–proteasome pathway and cellular responses to oxidative stress[J]. Free Radical Biology and Medicine,2011,51(1):5−16. doi: 10.1016/j.freeradbiomed.2011.03.031
    [37]
    BUTTERFIELD D A, HALLIWELL B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease[J]. Nature Reviews Neuroscience,2019,20(3):148−160. doi: 10.1038/s41583-019-0132-6
    [38]
    HAMPEL H, CARACI F, CUELLO A C, et al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease[J]. Frontiers in Immunology,2020,11:456. doi: 10.3389/fimmu.2020.00456
    [39]
    STOGSDILL J A, KIM K, BINAN L, et al. Pyramidal neuron subtype diversity governs microglia states in the neocortex[J]. Nature,2022,608(7924):750−756. doi: 10.1038/s41586-022-05056-7
    [40]
    COLONNA M, BUTOVSKY O. Microglia function in the central nervous system during health and neurodegeneration[J]. Annual Review of Immunology,2017,35(1):441−468. doi: 10.1146/annurev-immunol-051116-052358
    [41]
    GUILLOT-SESTIER M, TOWN T. Innate immunity in Alzheimer’s disease:A complex affair[J]. CNS & Neurological Disorders-Drug Targets,2013,12(5):593−607.
    [42]
    HAMELIN L, LAGARDE J, DOROTHÉE G, et al. Early and protective microglial activation in Alzheimer’s disease:A prospective study using 18F-DPA-714 PET imaging[J]. Brain,2016,139(4):1252−1264. doi: 10.1093/brain/aww017
    [43]
    SARLUS H, HENEKA M T. Microglia in Alzheimer’s disease[J]. Journal of Clinical Investigation,2017,127(9):3240−3249. doi: 10.1172/JCI90606
    [44]
    WENK G L. Neuropathologic changes in Alzheimer’s disease[J]. Journal of Clinical Psychiatry,2003,64:7−10.
    [45]
    LI S, HONG S, SHEPARDSON N E, et al. Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake[J]. Neuron,2009,62(6):788−801. doi: 10.1016/j.neuron.2009.05.012
    [46]
    SHIMOHAMA S. Apoptosis in Alzheimer’s disease-an update[J]. Apoptosis,2000,5(1):9−16. doi: 10.1023/A:1009625323388
    [47]
    GU B, NAKAMICHI N, ZHANG W, et al. Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by N-methyl-D-aspartate receptors composed of an NR1/NR2B subunit assembly[J]. Journal of Neuroscience Research,2009,87(9):2145−2156. doi: 10.1002/jnr.22021
    [48]
    NIU Y L, ZHANG W J, WU P, et al. Expression of the apoptosis-related proteins caspase-3 and NF-κB in the hippocampus of Tg2576 mice[J]. Neuroscience Bulletin,2010,26(1):37−46. doi: 10.1007/s12264-010-6122-3
    [49]
    ZHOU L S, LIAO W F, CHEN X, et al. An arabinogalactan from fruits of Lycium barbarum L. inhibits production and aggregation of Aβ42[J]. Carbohydrate Polymers, 2018:643.
    [50]
    WU J, CHEN T, WAN F, et al. Structural characterization of a polysaccharide from Lycium barbarum and its neuroprotective effect against β-amyloid peptide neurotoxicity[J]. International Journal of Biological Macromolecules,2021,176:352−363. doi: 10.1016/j.ijbiomac.2021.02.016
    [51]
    COLOMBO A, BASTONE A, PLOIA C, et al. JNK regulates APP cleavage and degradation in a model of Alzheimer’s disease[J]. Neurobiology of Disease,2009,33(3):518−525. doi: 10.1016/j.nbd.2008.12.014
    [52]
    ZANG C, LIU H, SHANG J, et al. Gardenia jasminoides J. Ellis extract GJ-4 alleviated cognitive deficits of APP/PS1 transgenic mice[J]. Phytomedicine,2021,93:153780. doi: 10.1016/j.phymed.2021.153780
    [53]
    LINK P, WETTERAUER B, FU Y, et al. Extracts of Glycyrrhiza uralensis and isoliquiritigenin counteract amyloid-β toxicity in caenorhabditis elegans[J]. Planta Medica,2015,81(5):357−362. doi: 10.1055/s-0035-1545724
    [54]
    ZENG Y Q, GU J H, CHEN L, et al. Gastrodin as a multi-target protective compound reverses learning memory deficits and AD-like pathology in APP/PS1 transgenic mice[J]. Journal of Functional Foods,2021,77:104324. doi: 10.1016/j.jff.2020.104324
    [55]
    QIN X, HUA J, LIN S, et al. Astragalus polysaccharide alleviates cognitive impairment and β-amyloid accumulation in APP/PS1 mice via Nrf2 pathway[J]. Biochemical and Biophysical Research Communications,2020,531(3):431−437. doi: 10.1016/j.bbrc.2020.07.122
    [56]
    XU Y J, MEI Y, QU Z L, et al. Ligustilide ameliorates memory deficiency in APP/PS1 transgenic mice via restoring mitochondrial dysfunction[J]. BioMed Research International,2018,2018:4606752.
    [57]
    王虎平, 吴红彦, 李海龙, 等. 当归多糖对阿尔茨海默病模型大鼠学习记忆及β-淀粉样蛋白代谢的影响[J]. 中国中医药信息杂志,2018,25(4):51−55. [WANG H P, WU H Y, LI H L, et al. Effects of angelica polysaccharide on learning and memory abilities and Aβ metabolism in model rats with Alzheimer disease[J]. Chinese Journal of Information on TCM,2018,25(4):51−55.]

    WANG H P, WU H Y, LI H L, et al. Effects of angelica polysaccharide on learning and memory abilities and Aβ metabolism in model rats with Alzheimer disease[J]. Chinese Journal of Information on TCM, 2018, 25(4): 51−55.
    [58]
    DAI Y, HAN G, XU S, et al. Echinacoside suppresses amyloidogenesis and modulates F-actin remodeling by targeting the ER stress sensor PERK in a mouse model of Alzheimer’s disease[J]. Frontiers in Cell and Developmental Biology,2020,8:593659. doi: 10.3389/fcell.2020.593659
    [59]
    SHIAO Y J, SU M H, LIN H C, et al. Acteoside and isoacteoside protect amyloid β peptide induced cytotoxicity, cognitive deficit and neurochemical disturbances in vitro and in vivo[J]. International Journal of Molecular Sciences,2017,18(4):895. doi: 10.3390/ijms18040895
    [60]
    BATARSEH Y S, BHARATE S S, KUMAR V, et al. Crocus sativus extract tightens the blood-brain barrier, reduces amyloid β load and related toxicity in 5XFAD mice[J]. ACS Chemical Neuroscience,2017,8(8):1756−1766. doi: 10.1021/acschemneuro.7b00101
    [61]
    ZHANG J, WANG Y, DONG X, et al. Crocetin attenuates inflammation and amyloid-β accumulation in APPsw transgenic mice[J]. Immunity & Ageing,2018,15(1):24.
    [62]
    HUANG H J, HUANG C Y, LEE M, et al. Puerariae radix prevents anxiety and cognitive deficits in mice under oligomeric Aβ-induced stress[J]. The American Journal of Chinese Medicine,2019,47(7):1459−1481. doi: 10.1142/S0192415X19500757
    [63]
    BIAN Y, CHEN Y, WANG X, et al. Oxyphylla A ameliorates cognitive deficits and alleviates neuropathology via the Akt-GSK3β and Nrf2-Keap1-HO-1 pathways in vitro and in vivo murine models of Alzheimer’s disease[J]. Journal of Advanced Research,2021,34:1−12. doi: 10.1016/j.jare.2021.09.002
    [64]
    HE B, XU F, YAN T, et al. Tectochrysin from Alpinia oxyphylla Miq. alleviates Aβ1–42 induced learning and memory impairments in mice[J]. European Journal of Pharmacology,2019,842:365−372. doi: 10.1016/j.ejphar.2018.11.002
    [65]
    HANGER D P, ANDERTON B H, NOBLE W. Tau phosphorylation:The therapeutic challenge for neurodegenerative disease[J]. Trends in Molecular Medicine,2009,15(3):112−119. doi: 10.1016/j.molmed.2009.01.003
    [66]
    KIM Y, LIU G, LEUGERS C J, et al. Tau interacts with SHP2 in neuronal systems and in Alzheimer’s disease[J]. Journal of Cell Science,2019,132(14):229054.
    [67]
    YANG C C, LI X L, GAO W B, et al. Cornel iridoid glycoside inhibits tau hyperphosphorylation via regulating cross-talk between GSK-3β and PP2A signaling[J]. Frontiers in Pharmacology,2018,9:682. doi: 10.3389/fphar.2018.00682
    [68]
    CHANG C P, LIU Y F, LIN H J, et al. Beneficial effect of astragaloside on Alzheimer’s disease condition using cultured primary cortical cells under β-amyloid exposure[J]. Molecular Neurobiology,2016,53(10):7329−7340. doi: 10.1007/s12035-015-9623-2
    [69]
    KARAKANI A M, RIAZI G, GHAFFARI S M, et al. Inhibitory effect of corcin on aggregation of 1N/4R human tau protein in vitro[J]. Iran J Basic Med Sci,2015,18(5):485−492.
    [70]
    YU N, HUANG Y, JIANG Y, et al. Ganoderma lucidum triterpenoids (GLTs) reduce neuronal apoptosis via inhibition of ROCK signal pathway in APP/PS1 transgenic Alzheimer’s disease mice[J]. Oxidative Medicine and Cellular Longevity, 2020:9894037.
    [71]
    LUO K, WANG Y, CHEN W S, et al. Treatment combining focused ultrasound with gastrodin alleviates memory deficit and neuropathology in an Alzheimer’s disease-like experimental mouse model[J]. Neural Plasticity, 2022:5241449.
    [72]
    杨慧敏, 杨楠, 罗铖, 等. 异甘草素对阿尔茨海默病小鼠认知功能的影响及其机制研究[J]. 现代中西医结合杂志,2022,31(4):491−496. [YANG H M, YANG N, LUO C, et al. Study on the effects and its mechanism of isoliquiritigenin on cognitive function in mice with Alzheimer’s disease[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine,2022,31(4):491−496.]

    YANG H M, YANG N, LUO C, et al. Study on the effects and its mechanism of isoliquiritigenin on cognitive function in mice with Alzheimer’s disease[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2022, 31(4): 491−496.
    [73]
    SHIN K, GUO H, CHA Y, et al. CereboostTM, an American ginseng extract, improves cognitive function via up-regulation of choline acetyltransferase expression and neuroprotection[J]. Regulatory Toxicology and Pharmacology,2016,78:53−58. doi: 10.1016/j.yrtph.2016.04.006
    [74]
    马俊俏, 吴勇, 周俊璇, 等. 益智仁挥发油对东莨菪碱致小鼠学习记忆障碍的改善作用研究[J]. 中国药房,2018,29(22):3074−3078. [MA J Q, WU Y, ZHOU J X, et al. Study on improvement effects of volatile oil from the fruit of Alpinia oxyphylla on scopolamine-induced learning and memory impairment in mice[J]. China Pharmacy,2018,29(22):3074−3078.]

    MA J Q, WU Y, ZHOU J X, et al. Study on improvement effects of volatile oil from the fruit of Alpinia oxyphylla on scopolamine-induced learning and memory impairment in mice[J]. China Pharmacy, 2018, 29(22): 3074−3078.
    [75]
    刘露露, 李洪宇, 苑广信. 黄精多糖对D-半乳糖诱导衰老小鼠学习和记忆水平的影响[J]. 北华大学学报(自然科学版),2021,22(2):192−197. [LIU L L, LI H Y, YUAN G X. Effect of Polygonatum sibiricum polysaccharides on learning and memory in D-galactose-induced aging mice[J]. Journal of Beihua University (Natural Science),2021,22(2):192−197.]

    LIU L L, LI H Y, YUAN G X. Effect of Polygonatum sibiricum polysaccharides on learning and memory in D-galactose-induced aging mice[J]. Journal of Beihua University (Natural Science), 2021, 22(2): 192−197.
    [76]
    阿布杜萨拉木·阿吾提, 多力坤·马木特, 卡迪尔亚·卡衣沙尔, 等. 中药提取物DM-1对阿尔茨海默病小鼠能量代谢及中枢胆碱能神经功能的影响[J]. 中国临床药理学杂志,2020,36(17):2668−2671. [ABUDUSALAMU·A W T, DUOLIKUN·M M T, KADIERYA·K Y Y E, et al. Effect of Chinese herb extract DM-1 on energy metabolism and central cholinergic nerve function in Alzheimer’s model mice[J]. The Chinese Journal of Clinical Pharmacology,2020,36(17):2668−2671.]

    ABUDUSALAMU·A W T, DUOLIKUN·M M T, KADIERYA·K Y Y E, et al. Effect of Chinese herb extract DM-1 on energy metabolism and central cholinergic nerve function in Alzheimer’s model mice[J]. The Chinese Journal of Clinical Pharmacology, 2020, 36(17): 2668−2671.
    [77]
    MAHDY K A, GOUDA N A, MARRIE A E F H, et al. Protective effect of ginger (Zingiber officinale) on Alzheimer’s disease induced in rats[J]. J Alzheimers Dis Parkinsonism,2014,4(5):178.
    [78]
    OSAMA A, ZHANG J, YAO J, et al. Nrf2:A dark horse in Alzheimer’s disease treatment[J]. Ageing Research Reviews,2020,64:101206. doi: 10.1016/j.arr.2020.101206
    [79]
    BAHN G, JO D G. Therapeutic approaches to Alzheimer’s disease through modulation of NRF2[J]. Neuro Molecular Medicine,2019,21(1):1−11. doi: 10.1007/s12017-018-08523-5
    [80]
    FU Y, JIA J. Isoliquiritigenin confers neuroprotection and alleviates amyloid-β42-induced neuroinflammation in microglia by regulating the Nrf2/NF-κB signaling[J]. Frontiers in Neuroscience,2021,15:638772. doi: 10.3389/fnins.2021.638772
    [81]
    HASNAT M A, PERVIN M, LIM B O. Acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of ganoderma lucidum grown on germinated brown rice[J]. Molecules,2013,18(6):6663−6678. doi: 10.3390/molecules18066663
    [82]
    PAN Y F, JIA X T, SONG E F. 2, et al. Astragaloside IV protects against Aβ1-42-induced oxidative stress, neuroinflammation and cognitive impairment in rats[J]. Chinese Medical Sciences Journal,2018,33(1):29−37.
    [83]
    LIU S, CAO X L, LIU G Q, et al. The in silico and in vivo evaluation of puerarin against Alzheimer’s disease[J]. Food & Function,2019,10(2):799−813.
    [84]
    李交, 肖友元, 谢沁, 等. 6-姜酚通过调节Wnt/β-catenin信号通路对Aβ诱导的AD大鼠细胞凋亡、氧化应激和神经炎症的影响[J]. 安徽医科大学学报,2022,57(1):95−100. [LI J, XIAO Y Y, XIE Q, et al. 6-gingerol relieves cell apoptosis, oxidative stress neuroinflammation in rats with Alzheimer’s disease by activating Wnt/β-catenin signaling pathway[J]. Acta Universitatis Medicinalis Anhui,2022,57(1):95−100.]

    LI J, XIAO Y Y, XIE Q, et al. 6-gingerol relieves cell apoptosis, oxidative stress neuroinflammation in rats with Alzheimer’s disease by activating Wnt/β-catenin signaling pathway[J]. Acta Universitatis Medicinalis Anhui, 2022, 57(1): 95−100.
    [85]
    ZHOU X, ZHANG Y, JIANG Y, et al. Poria cocos polysaccharide attenuates damage of nervus in Alzheimer’s disease rat model induced by D-galactose and aluminum trichloride[J]. Neuro Report,2021,32(8):727−737.
    [86]
    MCGEER P L, ROGERS J, MCGEER E G. Inflammation, anti-inflammatory agents, and Alzheimer’s disease:The last 22 years[J]. Journal of Alzheimer’s Disease,2016,54(3):853−857. doi: 10.3233/JAD-160488
    [87]
    JU HWANG C, CHOI D Y, PARK M H, et al. NF-κB as a key mediator of brain inflammation in Alzheimer’s disease[J]. CNS & Neurological Disorders-Drug Targets,2019,18(1):3−10.
    [88]
    CHEN C H, ZHOU W, LIU S, et al. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease[J]. The International Journal of Neuropsychopharmacology,2012,15(1):77−90. doi: 10.1017/S1461145711000149
    [89]
    SELF W K, HOLTZMAN D M. Emerging diagnostics and therapeutics for Alzheimer disease[J]. Nature Medicine,2023,29(9):2187−2199. doi: 10.1038/s41591-023-02505-2
    [90]
    WANG A, XIAO C, ZHENG J, et al. Terpenoids of Ganoderma lucidum reverse cognitive impairment through attenuating neurodegeneration via suppression of PI3K/AKT/mTOR expression in vivo model[J]. Journal of Functional Foods,2020,73:104142. doi: 10.1016/j.jff.2020.104142
    [91]
    KONG Z H, CHEN X, HUA H P, et al. The oral pretreatment of glycyrrhizin prevents surgery-induced cognitive impairment in aged mice by reducing neuroinflammation and Alzheimer’s-related pathology via HMGB1 inhibition[J]. Journal of Molecular Neuroscience,2017,63(3):385−395.
    [92]
    LI M, QIAN S. Gastrodin protects neural progenitor cells against amyloid β(1–42)-induced neurotoxicity and improves hippocampal neurogenesis in amyloid β(1–42)-injected mice[J]. Journal of Molecular Neuroscience,2016,60(1):21−32. doi: 10.1007/s12031-016-0758-z
    [93]
    WANG C, YE H, ZHENG Y, et al. Phenylethanoid glycosides of cistanche improve learning and memory disorders in APP/PS1 mice by regulating glial cell activation and inhibiting TLR4/NF-κB signaling pathway[J]. Neuromolecular Medicine,2023,25(1):75−93. doi: 10.1007/s12017-022-08717-y
    [94]
    HUANG L K, CHAO S P, HU C J. Clinical trials of new drugs for Alzheimer disease[J]. Journal of Biomedical Science,2020,27(1):18. doi: 10.1186/s12929-019-0592-z
    [95]
    ZHANG H, CAO Y, CHEN L, et al. A polysaccharide from Polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells[J]. Carbohydrate Polymers,2015,117:879−886. doi: 10.1016/j.carbpol.2014.10.034
    [96]
    HADIPOUR M, KAKA G, BAHRAMI F, et al. Crocin improved amyloid beta induced long-term potentiation and memory deficits in the hippocampal CA1 neurons in freely moving rats[J]. Synapse,2018,72(5):22026. doi: 10.1002/syn.22026
    [97]
    KHAN Z, HONG S M, LEE J W, et al. Potential of N-trans feruloyl tyramine from Lycium barbarum fruit extract on neurogenesis and neurotrophins; targeting TrkA/ERK/CREB signaling pathway[J]. Journal of Functional Foods,2021,80:104432. doi: 10.1016/j.jff.2021.104432
    [98]
    ZHOU Y, DUAN Y, HUANG S, et al. Polysaccharides from Lycium barbarum ameliorate amyloid pathology and cognitive functions in APP/PS1 transgenic mice[J]. International Journal of Biological Macromolecules,2020,144:1004−1012. doi: 10.1016/j.ijbiomac.2019.09.177
    [99]
    HUANG S, MAO J, DING K, et al. Polysaccharides from ganoderma lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer’s disease[J]. Stem Cell Reports,2017,8(1):84−94. doi: 10.1016/j.stemcr.2016.12.007
    [100]
    WANG X, WANG Y, HU J P, et al. Astragaloside IV, a natural PPARγ agonist, reduces Aβ production in Alzheimer’s disease through inhibition of BACE1[J]. Molecular Neurobiology,2017,54(4):2939−2949. doi: 10.1007/s12035-016-9874-6
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (256) PDF downloads (35) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return