Citation: | KANG Yao, TANG Yuan, ZHANG Dongxing, et al. Research Progress on the Mechanism of Action of Medicinal and Edible Homologous Substances in the Prevention and Treatment of Alzheimer's Disease[J]. Science and Technology of Food Industry, 2024, 45(12): 18−27. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090179. |
[1] |
Alzheimer’s Disease International. World Alzheimer Report 2019:Attitudes to dementia[R/OL]. 2019-09-20. https://www.alzint.org/resource/world-alzheimer-report-2019/.
|
[2] |
SONG Y, WANG J. Overview of Chinese research on senile dementia in mainland China[J]. Ageing Research Reviews,2010,9:S6−S12. doi: 10.1016/j.arr.2010.08.007
|
[3] |
中国老龄协会[EB/OL]. /2023-07-17. https://www.cncaprc.gov.cn/llxw/192277.jhtml. [China National Committee on Ageing[EB/OL]. /2023-07-17. https://www.cncaprc.gov.cn/llxw/192277.jhtml.]
China National Committee on Ageing[EB/OL]. /2023-07-17. https://www.cncaprc.gov.cn/llxw/192277.jhtml.
|
[4] |
DETURE M A, DICKSON D W. The neuropathological diagnosis of Alzheimer’s disease[J]. Molecular Neurodegeneration,2019,14(1):14−32. doi: 10.1186/s13024-019-0313-9
|
[5] |
CALSOLARO V, EDISON P. Neuroinflammation in Alzheimer’s disease:Current evidence and future directions[J]. Alzheimer’s & Dementia,2016,12(6):719−732.
|
[6] |
BRIGGS C A, CHAKROBORTY S, STUTZMANN G E. Emerging pathways driving early synaptic pathology in Alzheimer’s disease[J]. Biochemical and Biophysical Research Communications,2017,483(4):988−997. doi: 10.1016/j.bbrc.2016.09.088
|
[7] |
SAVELIEFF M G, NAM G, KANG J, et al. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade[J]. Chemical Reviews,2019,119(2):1221−1322. doi: 10.1021/acs.chemrev.8b00138
|
[8] |
DAS T K, JANA P, CHAKRABARTI S K, et al. Curcumin downregulates GSK3 and Cdk5 in scopolamine-induced Alzheimer’s disease rats abrogating Aβ40/42 and Tau hyperphosphorylation[J]. Journal of Alzheimer’s Disease Reports,2019,3(1):257−267. doi: 10.3233/ADR-190135
|
[9] |
GONZÁLEZ-GRANILLO A E, GNECCO D, DÍAZ A, et al. Curcumin induces cortico-hippocampal neuronal reshaping and memory improvements in aged mice[J]. Journal of Chemical Neuroanatomy,2022,121:102091. doi: 10.1016/j.jchemneu.2022.102091
|
[10] |
ZHANG H, SU Y, SUN Z, et al. Ginsenoside Rg1 alleviates Aβ deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice[J]. Journal of Ginseng Research,2021,45(6):665−675. doi: 10.1016/j.jgr.2021.03.003
|
[11] |
杨淑达, 于浩飞, 张兰春, 等. 人参皂苷Rb1对Aβ1-42导致的Tau蛋白异常磷酸化的影响[J]. 天然产物研究与开发,2020,32(7):1143−1147. [YANG S D, YU H F, ZHANG L C, et al. The effect of ginsenoside Rb1 on abnormal phosphory-lation of Tau induced by Aβ1-42[J]. Natural Product Research and Development,2020,32(7):1143−1147.]
YANG S D, YU H F, ZHANG L C, et al. The effect of ginsenoside Rb1 on abnormal phosphory-lation of Tau induced by Aβ1-42[J]. Natural Product Research and Development, 2020, 32(7): 1143−1147.
|
[12] |
KIM M S, YU J M, KIM H J, et al. Ginsenoside Re and Rd enhance the expression of cholinergic markers and neuronal differentiation in neuro-2a cells[J]. Biological and Pharmaceutical Bulletin,2014,37(5):826−833. doi: 10.1248/bpb.b14-00011
|
[13] |
SHIN S J, NAM Y, PARK Y H, et al. Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer’s disease[J]. Free Radical Biology and Medicine,2021,164:233−248. doi: 10.1016/j.freeradbiomed.2020.12.454
|
[14] |
WU Z, HUANG J, BAI X, et al. Ginsenoside-Rg1 mitigates cardiac arrest-induced cognitive damage by modulating neuroinflammation and hippocampal plasticity[J]. European Journal of Pharmacology,2023,938:175431. doi: 10.1016/j.ejphar.2022.175431
|
[15] |
GOVINDARAJU T, RAJASEKHAR K, CHAKRABARTI M. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease[J]. Chemical Communications,2015,51(70):13434−13450. doi: 10.1039/C5CC05264E
|
[16] |
SENGUPTA U, NILSON A N, KAYED R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy[J]. EBio Medicine,2016,6:42−49. doi: 10.1016/j.ebiom.2016.03.035
|
[17] |
TOMIC J L, PENSALFINI A, HEAD E, et al. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction[J]. Neurobiology of Disease,2009,35(3):352−358. doi: 10.1016/j.nbd.2009.05.024
|
[18] |
MUIRHEAD K E A, BORGER E, AITKEN L, et al. The consequences of mitochondrial amyloid β-peptide in Alzheimer’s disease[J]. Biochemical Journal,2010,426(3):255−270. doi: 10.1042/BJ20091941
|
[19] |
KIM J, ONSTEAD L, RANDLE S, et al. Aβ40 inhibits amyloid deposition in vivo[J]. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience,2007,27:627−633. doi: 10.1523/JNEUROSCI.4849-06.2007
|
[20] |
ASHRAFIAN H, ZADEH E H, KHAN R H. Review on Alzheimer’s disease:Inhibition of amyloid beta and tau tangle formation[J]. International Journal of Biological Macromolecules,2021,167:382−394. doi: 10.1016/j.ijbiomac.2020.11.192
|
[21] |
GUGLIELMOTTO M, GILIBERTO L, TAMAGNO E, et al. Oxidative stress mediates the pathogenic effect of different Alzheimer’s disease risk factors[J]. Frontiers in Aging Neuroscience,2010,2:3.
|
[22] |
TAIPA R, NEVES S P D, SOUSA A L, et al. Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive decline[J]. Neurobiology of Aging,2019,76:125−132. doi: 10.1016/j.neurobiolaging.2018.12.019
|
[23] |
TAQUI R, DEBNATH M, AHMED S, et al. Advances on plant extracts and phytocompounds with acetylcholinesterase inhibition activity for possible treatment of Alzheimer’s disease[J]. Phytomedicine Plus,2022,2(1):100184. doi: 10.1016/j.phyplu.2021.100184
|
[24] |
CARVALHO C, MOREIRA P I. Metabolic defects shared by Alzheimer’s disease and diabetes:A focus on mitochondria[J]. Current Opinion in Neurobiology,2023,79:102694. doi: 10.1016/j.conb.2023.102694
|
[25] |
MAZZARO N, BARINI E, SPILLANTINI M G, et al. Tau-driven neuronal and neurotrophic dysfunction in a mouse model of early tauopathy[J]. The Journal of Neuroscience,2016,36(7):2086−2100. doi: 10.1523/JNEUROSCI.0774-15.2016
|
[26] |
JU Y, TAM K. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease[J]. Neural Regeneration Research,2022,17(3):543−549. doi: 10.4103/1673-5374.320970
|
[27] |
MAPHIS N, XU G, KOKIKO-COCHRAN O N, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain[J]. Brain,2015,138(6):1738−1755. doi: 10.1093/brain/awv081
|
[28] |
AULD D S, KAR S, RÉMI QUIRION. β-Amyloid peptides as direct cholinergic neuromodulators:A missing link?[J]. Trends in Neurosciences,1998,21(1):43−49. doi: 10.1016/S0166-2236(97)01144-2
|
[29] |
MESULAM M. The cholinergic lesion of Alzheimer’s disease:Pivotal factor or side show?[J]. Learning & Memory,2004,11(1):43−49.
|
[30] |
TERRY A V, BUCCAFUSCO J J. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits:Recent challenges and their implications for novel drug development[J]. Journal of Pharmacology and Experimental Therapeutics,2003,306(3):821−827. doi: 10.1124/jpet.102.041616
|
[31] |
BOXER A L, SPERLING R. Accelerating Alzheimer’s therapeutic development:The past and future of clinical trials[J]. Cell,2023,186(22):4757−4772. doi: 10.1016/j.cell.2023.09.023
|
[32] |
BELHADJ SLIMEN I, NAJAR T, GHRAM A, et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review[J]. International Journal of Hyperthermia,2014,30(7):513−523. doi: 10.3109/02656736.2014.971446
|
[33] |
GANDHI S, ABRAMOV A Y. Mechanism of oxidative stress in neurodegeneration[J]. Oxidative Medicine and Cellular Longevity,2012,2012:1−11.
|
[34] |
LATIF F, IMRAN M. Antioxidants-a combat against oxidative stress in dementia[J]. Annals of Medicine & Surgery,2022,82:104632.
|
[35] |
ABRAMOV A Y, BEREZHNOV A V, FEDOTOVA E I, et al. Interaction of misfolded proteins and mitochondria in neurodegenerative disorders[J]. Biochemical Society Transactions,2017,45(4):1025−1033. doi: 10.1042/BST20170024
|
[36] |
SHANG F, TAYLOR A. Ubiquitin–proteasome pathway and cellular responses to oxidative stress[J]. Free Radical Biology and Medicine,2011,51(1):5−16. doi: 10.1016/j.freeradbiomed.2011.03.031
|
[37] |
BUTTERFIELD D A, HALLIWELL B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease[J]. Nature Reviews Neuroscience,2019,20(3):148−160. doi: 10.1038/s41583-019-0132-6
|
[38] |
HAMPEL H, CARACI F, CUELLO A C, et al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease[J]. Frontiers in Immunology,2020,11:456. doi: 10.3389/fimmu.2020.00456
|
[39] |
STOGSDILL J A, KIM K, BINAN L, et al. Pyramidal neuron subtype diversity governs microglia states in the neocortex[J]. Nature,2022,608(7924):750−756. doi: 10.1038/s41586-022-05056-7
|
[40] |
COLONNA M, BUTOVSKY O. Microglia function in the central nervous system during health and neurodegeneration[J]. Annual Review of Immunology,2017,35(1):441−468. doi: 10.1146/annurev-immunol-051116-052358
|
[41] |
GUILLOT-SESTIER M, TOWN T. Innate immunity in Alzheimer’s disease:A complex affair[J]. CNS & Neurological Disorders-Drug Targets,2013,12(5):593−607.
|
[42] |
HAMELIN L, LAGARDE J, DOROTHÉE G, et al. Early and protective microglial activation in Alzheimer’s disease:A prospective study using 18F-DPA-714 PET imaging[J]. Brain,2016,139(4):1252−1264. doi: 10.1093/brain/aww017
|
[43] |
SARLUS H, HENEKA M T. Microglia in Alzheimer’s disease[J]. Journal of Clinical Investigation,2017,127(9):3240−3249. doi: 10.1172/JCI90606
|
[44] |
WENK G L. Neuropathologic changes in Alzheimer’s disease[J]. Journal of Clinical Psychiatry,2003,64:7−10.
|
[45] |
LI S, HONG S, SHEPARDSON N E, et al. Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake[J]. Neuron,2009,62(6):788−801. doi: 10.1016/j.neuron.2009.05.012
|
[46] |
SHIMOHAMA S. Apoptosis in Alzheimer’s disease-an update[J]. Apoptosis,2000,5(1):9−16. doi: 10.1023/A:1009625323388
|
[47] |
GU B, NAKAMICHI N, ZHANG W, et al. Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by N-methyl-D-aspartate receptors composed of an NR1/NR2B subunit assembly[J]. Journal of Neuroscience Research,2009,87(9):2145−2156. doi: 10.1002/jnr.22021
|
[48] |
NIU Y L, ZHANG W J, WU P, et al. Expression of the apoptosis-related proteins caspase-3 and NF-κB in the hippocampus of Tg2576 mice[J]. Neuroscience Bulletin,2010,26(1):37−46. doi: 10.1007/s12264-010-6122-3
|
[49] |
ZHOU L S, LIAO W F, CHEN X, et al. An arabinogalactan from fruits of Lycium barbarum L. inhibits production and aggregation of Aβ42[J]. Carbohydrate Polymers, 2018:643.
|
[50] |
WU J, CHEN T, WAN F, et al. Structural characterization of a polysaccharide from Lycium barbarum and its neuroprotective effect against β-amyloid peptide neurotoxicity[J]. International Journal of Biological Macromolecules,2021,176:352−363. doi: 10.1016/j.ijbiomac.2021.02.016
|
[51] |
COLOMBO A, BASTONE A, PLOIA C, et al. JNK regulates APP cleavage and degradation in a model of Alzheimer’s disease[J]. Neurobiology of Disease,2009,33(3):518−525. doi: 10.1016/j.nbd.2008.12.014
|
[52] |
ZANG C, LIU H, SHANG J, et al. Gardenia jasminoides J. Ellis extract GJ-4 alleviated cognitive deficits of APP/PS1 transgenic mice[J]. Phytomedicine,2021,93:153780. doi: 10.1016/j.phymed.2021.153780
|
[53] |
LINK P, WETTERAUER B, FU Y, et al. Extracts of Glycyrrhiza uralensis and isoliquiritigenin counteract amyloid-β toxicity in caenorhabditis elegans[J]. Planta Medica,2015,81(5):357−362. doi: 10.1055/s-0035-1545724
|
[54] |
ZENG Y Q, GU J H, CHEN L, et al. Gastrodin as a multi-target protective compound reverses learning memory deficits and AD-like pathology in APP/PS1 transgenic mice[J]. Journal of Functional Foods,2021,77:104324. doi: 10.1016/j.jff.2020.104324
|
[55] |
QIN X, HUA J, LIN S, et al. Astragalus polysaccharide alleviates cognitive impairment and β-amyloid accumulation in APP/PS1 mice via Nrf2 pathway[J]. Biochemical and Biophysical Research Communications,2020,531(3):431−437. doi: 10.1016/j.bbrc.2020.07.122
|
[56] |
XU Y J, MEI Y, QU Z L, et al. Ligustilide ameliorates memory deficiency in APP/PS1 transgenic mice via restoring mitochondrial dysfunction[J]. BioMed Research International,2018,2018:4606752.
|
[57] |
王虎平, 吴红彦, 李海龙, 等. 当归多糖对阿尔茨海默病模型大鼠学习记忆及β-淀粉样蛋白代谢的影响[J]. 中国中医药信息杂志,2018,25(4):51−55. [WANG H P, WU H Y, LI H L, et al. Effects of angelica polysaccharide on learning and memory abilities and Aβ metabolism in model rats with Alzheimer disease[J]. Chinese Journal of Information on TCM,2018,25(4):51−55.]
WANG H P, WU H Y, LI H L, et al. Effects of angelica polysaccharide on learning and memory abilities and Aβ metabolism in model rats with Alzheimer disease[J]. Chinese Journal of Information on TCM, 2018, 25(4): 51−55.
|
[58] |
DAI Y, HAN G, XU S, et al. Echinacoside suppresses amyloidogenesis and modulates F-actin remodeling by targeting the ER stress sensor PERK in a mouse model of Alzheimer’s disease[J]. Frontiers in Cell and Developmental Biology,2020,8:593659. doi: 10.3389/fcell.2020.593659
|
[59] |
SHIAO Y J, SU M H, LIN H C, et al. Acteoside and isoacteoside protect amyloid β peptide induced cytotoxicity, cognitive deficit and neurochemical disturbances in vitro and in vivo[J]. International Journal of Molecular Sciences,2017,18(4):895. doi: 10.3390/ijms18040895
|
[60] |
BATARSEH Y S, BHARATE S S, KUMAR V, et al. Crocus sativus extract tightens the blood-brain barrier, reduces amyloid β load and related toxicity in 5XFAD mice[J]. ACS Chemical Neuroscience,2017,8(8):1756−1766. doi: 10.1021/acschemneuro.7b00101
|
[61] |
ZHANG J, WANG Y, DONG X, et al. Crocetin attenuates inflammation and amyloid-β accumulation in APPsw transgenic mice[J]. Immunity & Ageing,2018,15(1):24.
|
[62] |
HUANG H J, HUANG C Y, LEE M, et al. Puerariae radix prevents anxiety and cognitive deficits in mice under oligomeric Aβ-induced stress[J]. The American Journal of Chinese Medicine,2019,47(7):1459−1481. doi: 10.1142/S0192415X19500757
|
[63] |
BIAN Y, CHEN Y, WANG X, et al. Oxyphylla A ameliorates cognitive deficits and alleviates neuropathology via the Akt-GSK3β and Nrf2-Keap1-HO-1 pathways in vitro and in vivo murine models of Alzheimer’s disease[J]. Journal of Advanced Research,2021,34:1−12. doi: 10.1016/j.jare.2021.09.002
|
[64] |
HE B, XU F, YAN T, et al. Tectochrysin from Alpinia oxyphylla Miq. alleviates Aβ1–42 induced learning and memory impairments in mice[J]. European Journal of Pharmacology,2019,842:365−372. doi: 10.1016/j.ejphar.2018.11.002
|
[65] |
HANGER D P, ANDERTON B H, NOBLE W. Tau phosphorylation:The therapeutic challenge for neurodegenerative disease[J]. Trends in Molecular Medicine,2009,15(3):112−119. doi: 10.1016/j.molmed.2009.01.003
|
[66] |
KIM Y, LIU G, LEUGERS C J, et al. Tau interacts with SHP2 in neuronal systems and in Alzheimer’s disease[J]. Journal of Cell Science,2019,132(14):229054.
|
[67] |
YANG C C, LI X L, GAO W B, et al. Cornel iridoid glycoside inhibits tau hyperphosphorylation via regulating cross-talk between GSK-3β and PP2A signaling[J]. Frontiers in Pharmacology,2018,9:682. doi: 10.3389/fphar.2018.00682
|
[68] |
CHANG C P, LIU Y F, LIN H J, et al. Beneficial effect of astragaloside on Alzheimer’s disease condition using cultured primary cortical cells under β-amyloid exposure[J]. Molecular Neurobiology,2016,53(10):7329−7340. doi: 10.1007/s12035-015-9623-2
|
[69] |
KARAKANI A M, RIAZI G, GHAFFARI S M, et al. Inhibitory effect of corcin on aggregation of 1N/4R human tau protein in vitro[J]. Iran J Basic Med Sci,2015,18(5):485−492.
|
[70] |
YU N, HUANG Y, JIANG Y, et al. Ganoderma lucidum triterpenoids (GLTs) reduce neuronal apoptosis via inhibition of ROCK signal pathway in APP/PS1 transgenic Alzheimer’s disease mice[J]. Oxidative Medicine and Cellular Longevity, 2020:9894037.
|
[71] |
LUO K, WANG Y, CHEN W S, et al. Treatment combining focused ultrasound with gastrodin alleviates memory deficit and neuropathology in an Alzheimer’s disease-like experimental mouse model[J]. Neural Plasticity, 2022:5241449.
|
[72] |
杨慧敏, 杨楠, 罗铖, 等. 异甘草素对阿尔茨海默病小鼠认知功能的影响及其机制研究[J]. 现代中西医结合杂志,2022,31(4):491−496. [YANG H M, YANG N, LUO C, et al. Study on the effects and its mechanism of isoliquiritigenin on cognitive function in mice with Alzheimer’s disease[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine,2022,31(4):491−496.]
YANG H M, YANG N, LUO C, et al. Study on the effects and its mechanism of isoliquiritigenin on cognitive function in mice with Alzheimer’s disease[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2022, 31(4): 491−496.
|
[73] |
SHIN K, GUO H, CHA Y, et al. CereboostTM, an American ginseng extract, improves cognitive function via up-regulation of choline acetyltransferase expression and neuroprotection[J]. Regulatory Toxicology and Pharmacology,2016,78:53−58. doi: 10.1016/j.yrtph.2016.04.006
|
[74] |
马俊俏, 吴勇, 周俊璇, 等. 益智仁挥发油对东莨菪碱致小鼠学习记忆障碍的改善作用研究[J]. 中国药房,2018,29(22):3074−3078. [MA J Q, WU Y, ZHOU J X, et al. Study on improvement effects of volatile oil from the fruit of Alpinia oxyphylla on scopolamine-induced learning and memory impairment in mice[J]. China Pharmacy,2018,29(22):3074−3078.]
MA J Q, WU Y, ZHOU J X, et al. Study on improvement effects of volatile oil from the fruit of Alpinia oxyphylla on scopolamine-induced learning and memory impairment in mice[J]. China Pharmacy, 2018, 29(22): 3074−3078.
|
[75] |
刘露露, 李洪宇, 苑广信. 黄精多糖对D-半乳糖诱导衰老小鼠学习和记忆水平的影响[J]. 北华大学学报(自然科学版),2021,22(2):192−197. [LIU L L, LI H Y, YUAN G X. Effect of Polygonatum sibiricum polysaccharides on learning and memory in D-galactose-induced aging mice[J]. Journal of Beihua University (Natural Science),2021,22(2):192−197.]
LIU L L, LI H Y, YUAN G X. Effect of Polygonatum sibiricum polysaccharides on learning and memory in D-galactose-induced aging mice[J]. Journal of Beihua University (Natural Science), 2021, 22(2): 192−197.
|
[76] |
阿布杜萨拉木·阿吾提, 多力坤·马木特, 卡迪尔亚·卡衣沙尔, 等. 中药提取物DM-1对阿尔茨海默病小鼠能量代谢及中枢胆碱能神经功能的影响[J]. 中国临床药理学杂志,2020,36(17):2668−2671. [ABUDUSALAMU·A W T, DUOLIKUN·M M T, KADIERYA·K Y Y E, et al. Effect of Chinese herb extract DM-1 on energy metabolism and central cholinergic nerve function in Alzheimer’s model mice[J]. The Chinese Journal of Clinical Pharmacology,2020,36(17):2668−2671.]
ABUDUSALAMU·A W T, DUOLIKUN·M M T, KADIERYA·K Y Y E, et al. Effect of Chinese herb extract DM-1 on energy metabolism and central cholinergic nerve function in Alzheimer’s model mice[J]. The Chinese Journal of Clinical Pharmacology, 2020, 36(17): 2668−2671.
|
[77] |
MAHDY K A, GOUDA N A, MARRIE A E F H, et al. Protective effect of ginger (Zingiber officinale) on Alzheimer’s disease induced in rats[J]. J Alzheimers Dis Parkinsonism,2014,4(5):178.
|
[78] |
OSAMA A, ZHANG J, YAO J, et al. Nrf2:A dark horse in Alzheimer’s disease treatment[J]. Ageing Research Reviews,2020,64:101206. doi: 10.1016/j.arr.2020.101206
|
[79] |
BAHN G, JO D G. Therapeutic approaches to Alzheimer’s disease through modulation of NRF2[J]. Neuro Molecular Medicine,2019,21(1):1−11. doi: 10.1007/s12017-018-08523-5
|
[80] |
FU Y, JIA J. Isoliquiritigenin confers neuroprotection and alleviates amyloid-β42-induced neuroinflammation in microglia by regulating the Nrf2/NF-κB signaling[J]. Frontiers in Neuroscience,2021,15:638772. doi: 10.3389/fnins.2021.638772
|
[81] |
HASNAT M A, PERVIN M, LIM B O. Acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of ganoderma lucidum grown on germinated brown rice[J]. Molecules,2013,18(6):6663−6678. doi: 10.3390/molecules18066663
|
[82] |
PAN Y F, JIA X T, SONG E F. 2, et al. Astragaloside IV protects against Aβ1-42-induced oxidative stress, neuroinflammation and cognitive impairment in rats[J]. Chinese Medical Sciences Journal,2018,33(1):29−37.
|
[83] |
LIU S, CAO X L, LIU G Q, et al. The in silico and in vivo evaluation of puerarin against Alzheimer’s disease[J]. Food & Function,2019,10(2):799−813.
|
[84] |
李交, 肖友元, 谢沁, 等. 6-姜酚通过调节Wnt/β-catenin信号通路对Aβ诱导的AD大鼠细胞凋亡、氧化应激和神经炎症的影响[J]. 安徽医科大学学报,2022,57(1):95−100. [LI J, XIAO Y Y, XIE Q, et al. 6-gingerol relieves cell apoptosis, oxidative stress neuroinflammation in rats with Alzheimer’s disease by activating Wnt/β-catenin signaling pathway[J]. Acta Universitatis Medicinalis Anhui,2022,57(1):95−100.]
LI J, XIAO Y Y, XIE Q, et al. 6-gingerol relieves cell apoptosis, oxidative stress neuroinflammation in rats with Alzheimer’s disease by activating Wnt/β-catenin signaling pathway[J]. Acta Universitatis Medicinalis Anhui, 2022, 57(1): 95−100.
|
[85] |
ZHOU X, ZHANG Y, JIANG Y, et al. Poria cocos polysaccharide attenuates damage of nervus in Alzheimer’s disease rat model induced by D-galactose and aluminum trichloride[J]. Neuro Report,2021,32(8):727−737.
|
[86] |
MCGEER P L, ROGERS J, MCGEER E G. Inflammation, anti-inflammatory agents, and Alzheimer’s disease:The last 22 years[J]. Journal of Alzheimer’s Disease,2016,54(3):853−857. doi: 10.3233/JAD-160488
|
[87] |
JU HWANG C, CHOI D Y, PARK M H, et al. NF-κB as a key mediator of brain inflammation in Alzheimer’s disease[J]. CNS & Neurological Disorders-Drug Targets,2019,18(1):3−10.
|
[88] |
CHEN C H, ZHOU W, LIU S, et al. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease[J]. The International Journal of Neuropsychopharmacology,2012,15(1):77−90. doi: 10.1017/S1461145711000149
|
[89] |
SELF W K, HOLTZMAN D M. Emerging diagnostics and therapeutics for Alzheimer disease[J]. Nature Medicine,2023,29(9):2187−2199. doi: 10.1038/s41591-023-02505-2
|
[90] |
WANG A, XIAO C, ZHENG J, et al. Terpenoids of Ganoderma lucidum reverse cognitive impairment through attenuating neurodegeneration via suppression of PI3K/AKT/mTOR expression in vivo model[J]. Journal of Functional Foods,2020,73:104142. doi: 10.1016/j.jff.2020.104142
|
[91] |
KONG Z H, CHEN X, HUA H P, et al. The oral pretreatment of glycyrrhizin prevents surgery-induced cognitive impairment in aged mice by reducing neuroinflammation and Alzheimer’s-related pathology via HMGB1 inhibition[J]. Journal of Molecular Neuroscience,2017,63(3):385−395.
|
[92] |
LI M, QIAN S. Gastrodin protects neural progenitor cells against amyloid β(1–42)-induced neurotoxicity and improves hippocampal neurogenesis in amyloid β(1–42)-injected mice[J]. Journal of Molecular Neuroscience,2016,60(1):21−32. doi: 10.1007/s12031-016-0758-z
|
[93] |
WANG C, YE H, ZHENG Y, et al. Phenylethanoid glycosides of cistanche improve learning and memory disorders in APP/PS1 mice by regulating glial cell activation and inhibiting TLR4/NF-κB signaling pathway[J]. Neuromolecular Medicine,2023,25(1):75−93. doi: 10.1007/s12017-022-08717-y
|
[94] |
HUANG L K, CHAO S P, HU C J. Clinical trials of new drugs for Alzheimer disease[J]. Journal of Biomedical Science,2020,27(1):18. doi: 10.1186/s12929-019-0592-z
|
[95] |
ZHANG H, CAO Y, CHEN L, et al. A polysaccharide from Polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells[J]. Carbohydrate Polymers,2015,117:879−886. doi: 10.1016/j.carbpol.2014.10.034
|
[96] |
HADIPOUR M, KAKA G, BAHRAMI F, et al. Crocin improved amyloid beta induced long-term potentiation and memory deficits in the hippocampal CA1 neurons in freely moving rats[J]. Synapse,2018,72(5):22026. doi: 10.1002/syn.22026
|
[97] |
KHAN Z, HONG S M, LEE J W, et al. Potential of N-trans feruloyl tyramine from Lycium barbarum fruit extract on neurogenesis and neurotrophins; targeting TrkA/ERK/CREB signaling pathway[J]. Journal of Functional Foods,2021,80:104432. doi: 10.1016/j.jff.2021.104432
|
[98] |
ZHOU Y, DUAN Y, HUANG S, et al. Polysaccharides from Lycium barbarum ameliorate amyloid pathology and cognitive functions in APP/PS1 transgenic mice[J]. International Journal of Biological Macromolecules,2020,144:1004−1012. doi: 10.1016/j.ijbiomac.2019.09.177
|
[99] |
HUANG S, MAO J, DING K, et al. Polysaccharides from ganoderma lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer’s disease[J]. Stem Cell Reports,2017,8(1):84−94. doi: 10.1016/j.stemcr.2016.12.007
|
[100] |
WANG X, WANG Y, HU J P, et al. Astragaloside IV, a natural PPARγ agonist, reduces Aβ production in Alzheimer’s disease through inhibition of BACE1[J]. Molecular Neurobiology,2017,54(4):2939−2949. doi: 10.1007/s12035-016-9874-6
|