ZHANG Wenwen, HU Yadong, SUN Wenke, et al. Non-destructive Detection of Water Content in Porphyra Based on Near-infrared Spectroscopy and Deep Learning[J]. Science and Technology of Food Industry, 2024, 45(21): 190−197. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100153.
Citation: ZHANG Wenwen, HU Yadong, SUN Wenke, et al. Non-destructive Detection of Water Content in Porphyra Based on Near-infrared Spectroscopy and Deep Learning[J]. Science and Technology of Food Industry, 2024, 45(21): 190−197. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100153.

Non-destructive Detection of Water Content in Porphyra Based on Near-infrared Spectroscopy and Deep Learning

More Information
  • Received Date: October 22, 2023
  • Available Online: August 23, 2024
  • In order to explore the feasibility of combining near-infrared (NIR) spectroscopy and deep learning network for quantitative moisture detection, the dried Porphyra was divided into 479 groups, which detected the NIR spectra and moisture content. Four traditional quantitative moisture prediction models and a convolution neural networks (CNN) deep-learning moisture prediction model were finally established at full spectrum by preprocessing and analyzing the experimental data. After comparing the prediction results of the five models, it was found that the CNN model established by the preprocessing method of S-G smoothing combined with the second derivative had the best prediction effect. Its root-mean-square error of prediction (RMSEP) value was 0.456 and the coefficient of determination of prediction (Rp2) value was 0.990. After optimization, the RMSEP value of the model was reduced to 0.342 and the Rp2 value could reach 0.994 (>0.8). At the same time, the ratio of performance to deviation for validation (RPD) was 6.155 (>3), which proved the possibility of practical application of the model in agriculture and food industry. The CNN model could predict the moisture content quickly, accurately, and non-destructive, improve the efficiency and accuracy of moisture detection, and provide an important reference for the quality control of related dry aquatic products.
  • loading
  • [1]
    曹荣, 胡梦月, 谭志军, 等. 基于电子舌和气相色谱-离子迁移谱分析坛紫菜与条斑紫菜的风味特征[J]. 食品科学,2021,42(8):186−191. [CAO R, HU M Y, TAN Z J, et al. Flavor characteristics of Porphyra haitanensis and Porphyra yezoensis:A comparison study using electronic tongue and gas chromatography-ion mobility spectrometry[J]. Food Science,2021,42(8):186−191.] doi: 10.7506/spkx1002-6630-20191110-101

    CAO R, HU M Y, TAN Z J, et al. Flavor characteristics of Porphyra haitanensis and Porphyra yezoensis: A comparison study using electronic tongue and gas chromatography-ion mobility spectrometry[J]. Food Science, 2021, 42(8): 186−191. doi: 10.7506/spkx1002-6630-20191110-101
    [2]
    侍江春, 肖宇雪, 俸贵强, 等. 不同干条斑紫菜和烤条斑紫菜光合色素含量分析[J]. 食品与发酵工业,2020,46(23):169−177. [SHI J C, XIAO Y X, FENG G Q, et al. Analysis of photosynthetic pigment content of different dried and roasted laver[J]. Food and Fermentation Industries,2020,46(23):169−177.]

    SHI J C, XIAO Y X, FENG G Q, et al. Analysis of photosynthetic pigment content of different dried and roasted laver[J]. Food and Fermentation Industries, 2020, 46(23): 169−177.
    [3]
    于宁, 戴卫平, 高永刚, 等. 中国紫菜国际贸易现状及主要问题研究[J]. 中国渔业经济,2018,36(5):39−45. [YU N, DAI W P, GAO Y G, et al. Analysis and countermeasures of Chinese laver international trade[J]. Chinese Fisheries Economics,2018,36(5):39−45.] doi: 10.3969/j.issn.1009-590X.2018.05.005

    YU N, DAI W P, GAO Y G, et al. Analysis and countermeasures of Chinese laver international trade[J]. Chinese Fisheries Economics, 2018, 36(5): 39−45. doi: 10.3969/j.issn.1009-590X.2018.05.005
    [4]
    赵炜. 探讨干紫菜质量安全卫生控制体系的建立[J]. 食品研究与开发,2014,35(23):134−137. [ZHAO W. Discussion on the establishment of quality safety and sanitary control system of dried seaweed[J]. Food Research and Development,2014,35(23):134−137.] doi: 10.3969/j.issn.1005-6521.2014.23.037

    ZHAO W. Discussion on the establishment of quality safety and sanitary control system of dried seaweed[J]. Food Research and Development, 2014, 35(23): 134−137. doi: 10.3969/j.issn.1005-6521.2014.23.037
    [5]
    林鹏程, 张钟元, 江宁, 等. 紫菜热风/微波联合干燥工艺优化及品质分析[J]. 食品工业科技,2022,43(2):215−225. [LIN P C, ZHANG Z Y, JIANG N, et al. Optimization of two step drying process of Porphyra by hot air and microwave and quality evaluation[J]. Science and Technology of Food Industry,2022,43(2):215−225.]

    LIN P C, ZHANG Z Y, JIANG N, et al. Optimization of two step drying process of Porphyra by hot air and microwave and quality evaluation[J]. Science and Technology of Food Industry, 2022, 43(2): 215−225.
    [6]
    陈洋, 张建, 陈炳屹, 等. 条斑紫菜加工技术研究进展[J]. 特种经济动植物,2022,25(3):113. [CHEN Y, ZHANG J, CHEN B Y, et al. Research progress on processing technology of Porphyra striata[J]. Special Economic Animals and Plants,2022,25(3):113.] doi: 10.3969/j.issn.1001-4713.2022.03.023

    CHEN Y, ZHANG J, CHEN B Y, et al. Research progress on processing technology of Porphyra striata[J]. Special Economic Animals and Plants, 2022, 25(3): 113. doi: 10.3969/j.issn.1001-4713.2022.03.023
    [7]
    冯智银. 条斑紫菜干紫菜加工技术[J]. 渔业现代化,2002(5):29−30. [FENG Z Y. Processing technology of dried laver[J]. Fishery Modernization,2002(5):29−30.] doi: 10.3969/j.issn.1007-9580.2002.05.013

    FENG Z Y. Processing technology of dried laver[J]. Fishery Modernization, 2002(5): 29−30. doi: 10.3969/j.issn.1007-9580.2002.05.013
    [8]
    国家市场监督管理总局, 国家标准化管理委员会. GB/T 23597-2022 干紫菜质量通则[S]. 2022:12. [State Administration for Market Regulation, National Standardization Administration. GB/T 23597-2022 General principles of quality of dried laver[S]. 2022:12.]

    State Administration for Market Regulation, National Standardization Administration. GB/T 23597-2022 General principles of quality of dried laver[S]. 2022: 12.
    [9]
    中华人民共和国国家卫生健康委员会. GB 5009.3-2016 食品安全国家标准 食品中水分的测定[S]. 2016:12. [National Health Commission of the People's Republic of China. GB 5009.3-2016 Determination of moisture in food of National Standard for Food Safety[S]. 2016:12.]

    National Health Commission of the People's Republic of China. GB 5009.3-2016 Determination of moisture in food of National Standard for Food Safety[S]. 2016: 12.
    [10]
    周熙, 秦文. 浅谈食品水分含量快速检测法[J]. 现代测量与实验室管理,2007(3):15−17,21. [ZHOU X, QIN W. Rapid detection of food moisture content[J]. China Inspection Body & Laboratory,2007(3):15−17,21.]

    ZHOU X, QIN W. Rapid detection of food moisture content[J]. China Inspection Body & Laboratory, 2007(3): 15−17,21.
    [11]
    王联珠, 殷邦忠, 戴卫平, 等. 紫菜国际标准制定对我国紫菜产业的影响[J]. 渔业科学进展,2013,34(6):143−148. [WANG L Z, YIN B Z, DAI W P, et al. The impact of formulation of international standards for laver products on Chinese laver industry[J]. Progress in Fishery Sciences,2013,34(6):143−148.] doi: 10.3969/j.issn.1000-7075.2013.06.022

    WANG L Z, YIN B Z, DAI W P, et al. The impact of formulation of international standards for laver products on Chinese laver industry[J]. Progress in Fishery Sciences, 2013, 34(6): 143−148. doi: 10.3969/j.issn.1000-7075.2013.06.022
    [12]
    王会, 卢雅婷. 近红外水分测定仪的发展及在食品水分检测中的应用[J]. 农业工程,2016,6(1):58−61. [WANG H, LU Y T. Development of near infrared moisture measuring instrument and its application in food moisture detection[J]. Agricultural Engineering,2016,6(1):58−61.] doi: 10.3969/j.issn.2095-1795.2016.01.021

    WANG H, LU Y T. Development of near infrared moisture measuring instrument and its application in food moisture detection[J]. Agricultural Engineering, 2016, 6(1): 58−61. doi: 10.3969/j.issn.2095-1795.2016.01.021
    [13]
    刘爽, 柴春祥. 近红外光谱技术在水产品检测中的应用进展[J]. 食品安全质量检测学报,2021,12(21):8590−8596. [LIU S, CHAI C X. Application progress of near infrared spectroscopy in aquatic products detection[J]. Journal of Food Safety & Quality,2021,12(21):8590−8596.]

    LIU S, CHAI C X. Application progress of near infrared spectroscopy in aquatic products detection[J]. Journal of Food Safety & Quality, 2021, 12(21): 8590−8596.
    [14]
    AFARA I O, PRASADAM I, ARABSHAHI Z, et al. Monitoring osteoarthritis progression using near infrared (NIR) spectroscopy[J]. Scientific Reports,2017,7(1):11463. doi: 10.1038/s41598-017-11844-3
    [15]
    GUAN X C, CHEN X J, JIANG J. Integration of modified uninformative variable elimination and successive projections algorithm for determination harvest time of laver by using visible and near infrared spectra[J]. African Journal of Agricultural Research,2011,6(27):5987−5991.
    [16]
    WU D, CHEN X, ZHU X, et al. Uninformative variable elimination for improvement of successive projections algorithm on spectral multivariable selection with different calibration algorithms for the rapid and non-destructive determination of protein content in dried laver[J]. Analytical Methods,2011,3(8):1790−1796. doi: 10.1039/c1ay05075c
    [17]
    方明明, 刘静. 基于回归卷积神经网络的近红外光谱苹果脆片品质评价方法研究[J]. 食品科技,2020,45(7):303−308,16. [FANG M M, LIU J. Evaluation method of apple chips quality by near infrared spectroscopy based on regressive convolutional neural network[J]. Food Science and Technology,2020,45(7):303−308,16.]

    FANG M M, LIU J. Evaluation method of apple chips quality by near infrared spectroscopy based on regressive convolutional neural network[J]. Food Science and Technology, 2020, 45(7): 303−308,16.
    [18]
    BENMOUNA B, GARCÍA-MATEOS G, SABZI S, et al. Convolutional neural networks for estimating the ripening state of fuji apples using visible and near-infrared spectroscopy[J]. Food and Bioprocess Technology,2022,15(10):2226−2236. doi: 10.1007/s11947-022-02880-7
    [19]
    门昌骞, 孟晓超, 姜高霞, 等. 一种利用SPXY采样的标签噪声主动清洗方法[J]. 小型微型计算机系统,2021,42(9):1865−1870. [MEN C Q, MENG X C, JIANG G X, et al. Active label noise cleaning method based on SPXY sampling[J]. Journal of Chinese Computer Systems,2021,42(9):1865−1870.] doi: 10.3969/j.issn.1000-1220.2021.09.011

    MEN C Q, MENG X C, JIANG G X, et al. Active label noise cleaning method based on SPXY sampling[J]. Journal of Chinese Computer Systems, 2021, 42(9): 1865−1870. doi: 10.3969/j.issn.1000-1220.2021.09.011
    [20]
    WANG S F, HAN P, CUI G L, et al. The NIR detection research of soluble solid content in watermelon based on SPXY algorithm[J]. Spectroscopy and Spectral Analysis,2019,39(3):738.
    [21]
    LU M Y, YANG K, SONG P F, et al. The study of classification modeling method for near infrared spectroscopy of tobacco leaves based on convolution neural network[J]. Spectroscopy and Spectral Analysis,2018,38(12):3724−3728.
    [22]
    陈方方, 丁跃武, 杨友, 等. 近红外光谱样本集划分以及预处理的方法研究[J]. 甘肃科技,2023,39(1):46−50. [CHEN F F, DING Y W, YANG Y, et al. Research on near infrared spectroscopy sample set partitioning and preprocessing[J]. Gansu Science and Technology,2023,39(1):46−50.]

    CHEN F F, DING Y W, YANG Y, et al. Research on near infrared spectroscopy sample set partitioning and preprocessing[J]. Gansu Science and Technology, 2023, 39(1): 46−50.
    [23]
    SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry,1964,36(8):1627−1639. doi: 10.1021/ac60214a047
    [24]
    褚小立, 刘慧颖, 燕泽程. 近红外光谱分析技术实用手册[M]. 北京:机械工业出版社, 2016:956. [CHU X L, LIU H Y, YAN Z C. 近红外光谱分析技术实用手册[M]. Beijing:China Machine Press, 2016:956.]

    CHU X L, LIU H Y, YAN Z C. 近红外光谱分析技术实用手册[M]. Beijing: China Machine Press, 2016: 956.
    [25]
    LI X X, ZHU C G, FU Z T, et al. Rapid detection of soil moisture content based on UAV multispectral image[J]. Spectroscopy and Spectral Analysis,2020,40(4):1238.
    [26]
    WILLIAMS P C, NORRIS K H. Near-infrared technology in the agricultural and food industries[J]. Starch-Stärke,1988,40(10):408.
    [27]
    LIU D, WANG E, WANG G, et al. Nondestructive determination of soluble solids content, firmness, and moisture content of "Longxiang" pears during maturation using near-infrared spectroscopy[J]. Journal of Food Processing and Preservation,2022,46(3):e16332.
    [28]
    SHIRISH KESKAR N, MUDIGERE D, NOCEDAL J, et al. On large-batch training for deep learning:Generalization gap and sharp minima[J/OL]. 2016, arXiv:1609.04836 https://ui.adsabs.harvard.edu/abs/2016arXiv160904836S. 10.48550/arXiv.1609.04836.
    [29]
    HEATON J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville:Deep learning:The MIT Press, 2016, 800 pp, ISBN:0262035618[J]. Genetic Programming and Evolvable Machines,2017,19:305−307.
    [30]
    BOUTAMI S, ZHAO N, FAN S. Determining the optimal learning rate in gradient-based electromagnetic optimization using the Shanks transformation in the Lippmann-Schwinger formalism[J]. Optics Letters,2020,45(3):595−598. doi: 10.1364/OL.379375
    [31]
    SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014,15(1):1929−1958.
    [32]
    谈爱玲, 王晓斯, 楚振原, 等. 基于近红外光谱融合与深度学习的玉米成分定量建模方法[J]. 食品与发酵工业,2020,46(23):213−219. [TAN A L, WANG X S, CHU Z Y, et al. Research on quantitative modeling method of maize composition based on near infrared spectrum fusion and deep learning[J]. Food and Fermentation Industries,2020,46(23):213−219.]

    TAN A L, WANG X S, CHU Z Y, et al. Research on quantitative modeling method of maize composition based on near infrared spectrum fusion and deep learning[J]. Food and Fermentation Industries, 2020, 46(23): 213−219.
    [33]
    沈晔. 基于高光谱成像技术的干贝水分含量快速检测研究[D]. 杭州:浙江大学, 2017. [SHEN Y. Rapid determination of the moisture content in dried scallop based on hyperspectral imaging[D]. Hangzhou:Zhejiang University, 2017.]

    SHEN Y. Rapid determination of the moisture content in dried scallop based on hyperspectral imaging[D]. Hangzhou: Zhejiang University, 2017.
    [34]
    JIANG H, ZHOU Y, ZHANG C, et al. Evaluation of dual-band near-infrared spectroscopy and chemometric analysis for rapid quantification of multi-quality parameters of soy sauce stewed meat[J]. Foods,2023,12(15):2882. doi: 10.3390/foods12152882
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (86) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return