Citation: | ZHANG Wenwen, HU Yadong, SUN Wenke, et al. Non-destructive Detection of Water Content in Porphyra Based on Near-infrared Spectroscopy and Deep Learning[J]. Science and Technology of Food Industry, 2024, 45(21): 190−197. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100153. |
[1] |
曹荣, 胡梦月, 谭志军, 等. 基于电子舌和气相色谱-离子迁移谱分析坛紫菜与条斑紫菜的风味特征[J]. 食品科学,2021,42(8):186−191. [CAO R, HU M Y, TAN Z J, et al. Flavor characteristics of Porphyra haitanensis and Porphyra yezoensis:A comparison study using electronic tongue and gas chromatography-ion mobility spectrometry[J]. Food Science,2021,42(8):186−191.] doi: 10.7506/spkx1002-6630-20191110-101
CAO R, HU M Y, TAN Z J, et al. Flavor characteristics of Porphyra haitanensis and Porphyra yezoensis: A comparison study using electronic tongue and gas chromatography-ion mobility spectrometry[J]. Food Science, 2021, 42(8): 186−191. doi: 10.7506/spkx1002-6630-20191110-101
|
[2] |
侍江春, 肖宇雪, 俸贵强, 等. 不同干条斑紫菜和烤条斑紫菜光合色素含量分析[J]. 食品与发酵工业,2020,46(23):169−177. [SHI J C, XIAO Y X, FENG G Q, et al. Analysis of photosynthetic pigment content of different dried and roasted laver[J]. Food and Fermentation Industries,2020,46(23):169−177.]
SHI J C, XIAO Y X, FENG G Q, et al. Analysis of photosynthetic pigment content of different dried and roasted laver[J]. Food and Fermentation Industries, 2020, 46(23): 169−177.
|
[3] |
于宁, 戴卫平, 高永刚, 等. 中国紫菜国际贸易现状及主要问题研究[J]. 中国渔业经济,2018,36(5):39−45. [YU N, DAI W P, GAO Y G, et al. Analysis and countermeasures of Chinese laver international trade[J]. Chinese Fisheries Economics,2018,36(5):39−45.] doi: 10.3969/j.issn.1009-590X.2018.05.005
YU N, DAI W P, GAO Y G, et al. Analysis and countermeasures of Chinese laver international trade[J]. Chinese Fisheries Economics, 2018, 36(5): 39−45. doi: 10.3969/j.issn.1009-590X.2018.05.005
|
[4] |
赵炜. 探讨干紫菜质量安全卫生控制体系的建立[J]. 食品研究与开发,2014,35(23):134−137. [ZHAO W. Discussion on the establishment of quality safety and sanitary control system of dried seaweed[J]. Food Research and Development,2014,35(23):134−137.] doi: 10.3969/j.issn.1005-6521.2014.23.037
ZHAO W. Discussion on the establishment of quality safety and sanitary control system of dried seaweed[J]. Food Research and Development, 2014, 35(23): 134−137. doi: 10.3969/j.issn.1005-6521.2014.23.037
|
[5] |
林鹏程, 张钟元, 江宁, 等. 紫菜热风/微波联合干燥工艺优化及品质分析[J]. 食品工业科技,2022,43(2):215−225. [LIN P C, ZHANG Z Y, JIANG N, et al. Optimization of two step drying process of Porphyra by hot air and microwave and quality evaluation[J]. Science and Technology of Food Industry,2022,43(2):215−225.]
LIN P C, ZHANG Z Y, JIANG N, et al. Optimization of two step drying process of Porphyra by hot air and microwave and quality evaluation[J]. Science and Technology of Food Industry, 2022, 43(2): 215−225.
|
[6] |
陈洋, 张建, 陈炳屹, 等. 条斑紫菜加工技术研究进展[J]. 特种经济动植物,2022,25(3):113. [CHEN Y, ZHANG J, CHEN B Y, et al. Research progress on processing technology of Porphyra striata[J]. Special Economic Animals and Plants,2022,25(3):113.] doi: 10.3969/j.issn.1001-4713.2022.03.023
CHEN Y, ZHANG J, CHEN B Y, et al. Research progress on processing technology of Porphyra striata[J]. Special Economic Animals and Plants, 2022, 25(3): 113. doi: 10.3969/j.issn.1001-4713.2022.03.023
|
[7] |
冯智银. 条斑紫菜干紫菜加工技术[J]. 渔业现代化,2002(5):29−30. [FENG Z Y. Processing technology of dried laver[J]. Fishery Modernization,2002(5):29−30.] doi: 10.3969/j.issn.1007-9580.2002.05.013
FENG Z Y. Processing technology of dried laver[J]. Fishery Modernization, 2002(5): 29−30. doi: 10.3969/j.issn.1007-9580.2002.05.013
|
[8] |
国家市场监督管理总局, 国家标准化管理委员会. GB/T 23597-2022 干紫菜质量通则[S]. 2022:12. [State Administration for Market Regulation, National Standardization Administration. GB/T 23597-2022 General principles of quality of dried laver[S]. 2022:12.]
State Administration for Market Regulation, National Standardization Administration. GB/T 23597-2022 General principles of quality of dried laver[S]. 2022: 12.
|
[9] |
中华人民共和国国家卫生健康委员会. GB 5009.3-2016 食品安全国家标准 食品中水分的测定[S]. 2016:12. [National Health Commission of the People's Republic of China. GB 5009.3-2016 Determination of moisture in food of National Standard for Food Safety[S]. 2016:12.]
National Health Commission of the People's Republic of China. GB 5009.3-2016 Determination of moisture in food of National Standard for Food Safety[S]. 2016: 12.
|
[10] |
周熙, 秦文. 浅谈食品水分含量快速检测法[J]. 现代测量与实验室管理,2007(3):15−17,21. [ZHOU X, QIN W. Rapid detection of food moisture content[J]. China Inspection Body & Laboratory,2007(3):15−17,21.]
ZHOU X, QIN W. Rapid detection of food moisture content[J]. China Inspection Body & Laboratory, 2007(3): 15−17,21.
|
[11] |
王联珠, 殷邦忠, 戴卫平, 等. 紫菜国际标准制定对我国紫菜产业的影响[J]. 渔业科学进展,2013,34(6):143−148. [WANG L Z, YIN B Z, DAI W P, et al. The impact of formulation of international standards for laver products on Chinese laver industry[J]. Progress in Fishery Sciences,2013,34(6):143−148.] doi: 10.3969/j.issn.1000-7075.2013.06.022
WANG L Z, YIN B Z, DAI W P, et al. The impact of formulation of international standards for laver products on Chinese laver industry[J]. Progress in Fishery Sciences, 2013, 34(6): 143−148. doi: 10.3969/j.issn.1000-7075.2013.06.022
|
[12] |
王会, 卢雅婷. 近红外水分测定仪的发展及在食品水分检测中的应用[J]. 农业工程,2016,6(1):58−61. [WANG H, LU Y T. Development of near infrared moisture measuring instrument and its application in food moisture detection[J]. Agricultural Engineering,2016,6(1):58−61.] doi: 10.3969/j.issn.2095-1795.2016.01.021
WANG H, LU Y T. Development of near infrared moisture measuring instrument and its application in food moisture detection[J]. Agricultural Engineering, 2016, 6(1): 58−61. doi: 10.3969/j.issn.2095-1795.2016.01.021
|
[13] |
刘爽, 柴春祥. 近红外光谱技术在水产品检测中的应用进展[J]. 食品安全质量检测学报,2021,12(21):8590−8596. [LIU S, CHAI C X. Application progress of near infrared spectroscopy in aquatic products detection[J]. Journal of Food Safety & Quality,2021,12(21):8590−8596.]
LIU S, CHAI C X. Application progress of near infrared spectroscopy in aquatic products detection[J]. Journal of Food Safety & Quality, 2021, 12(21): 8590−8596.
|
[14] |
AFARA I O, PRASADAM I, ARABSHAHI Z, et al. Monitoring osteoarthritis progression using near infrared (NIR) spectroscopy[J]. Scientific Reports,2017,7(1):11463. doi: 10.1038/s41598-017-11844-3
|
[15] |
GUAN X C, CHEN X J, JIANG J. Integration of modified uninformative variable elimination and successive projections algorithm for determination harvest time of laver by using visible and near infrared spectra[J]. African Journal of Agricultural Research,2011,6(27):5987−5991.
|
[16] |
WU D, CHEN X, ZHU X, et al. Uninformative variable elimination for improvement of successive projections algorithm on spectral multivariable selection with different calibration algorithms for the rapid and non-destructive determination of protein content in dried laver[J]. Analytical Methods,2011,3(8):1790−1796. doi: 10.1039/c1ay05075c
|
[17] |
方明明, 刘静. 基于回归卷积神经网络的近红外光谱苹果脆片品质评价方法研究[J]. 食品科技,2020,45(7):303−308,16. [FANG M M, LIU J. Evaluation method of apple chips quality by near infrared spectroscopy based on regressive convolutional neural network[J]. Food Science and Technology,2020,45(7):303−308,16.]
FANG M M, LIU J. Evaluation method of apple chips quality by near infrared spectroscopy based on regressive convolutional neural network[J]. Food Science and Technology, 2020, 45(7): 303−308,16.
|
[18] |
BENMOUNA B, GARCÍA-MATEOS G, SABZI S, et al. Convolutional neural networks for estimating the ripening state of fuji apples using visible and near-infrared spectroscopy[J]. Food and Bioprocess Technology,2022,15(10):2226−2236. doi: 10.1007/s11947-022-02880-7
|
[19] |
门昌骞, 孟晓超, 姜高霞, 等. 一种利用SPXY采样的标签噪声主动清洗方法[J]. 小型微型计算机系统,2021,42(9):1865−1870. [MEN C Q, MENG X C, JIANG G X, et al. Active label noise cleaning method based on SPXY sampling[J]. Journal of Chinese Computer Systems,2021,42(9):1865−1870.] doi: 10.3969/j.issn.1000-1220.2021.09.011
MEN C Q, MENG X C, JIANG G X, et al. Active label noise cleaning method based on SPXY sampling[J]. Journal of Chinese Computer Systems, 2021, 42(9): 1865−1870. doi: 10.3969/j.issn.1000-1220.2021.09.011
|
[20] |
WANG S F, HAN P, CUI G L, et al. The NIR detection research of soluble solid content in watermelon based on SPXY algorithm[J]. Spectroscopy and Spectral Analysis,2019,39(3):738.
|
[21] |
LU M Y, YANG K, SONG P F, et al. The study of classification modeling method for near infrared spectroscopy of tobacco leaves based on convolution neural network[J]. Spectroscopy and Spectral Analysis,2018,38(12):3724−3728.
|
[22] |
陈方方, 丁跃武, 杨友, 等. 近红外光谱样本集划分以及预处理的方法研究[J]. 甘肃科技,2023,39(1):46−50. [CHEN F F, DING Y W, YANG Y, et al. Research on near infrared spectroscopy sample set partitioning and preprocessing[J]. Gansu Science and Technology,2023,39(1):46−50.]
CHEN F F, DING Y W, YANG Y, et al. Research on near infrared spectroscopy sample set partitioning and preprocessing[J]. Gansu Science and Technology, 2023, 39(1): 46−50.
|
[23] |
SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry,1964,36(8):1627−1639. doi: 10.1021/ac60214a047
|
[24] |
褚小立, 刘慧颖, 燕泽程. 近红外光谱分析技术实用手册[M]. 北京:机械工业出版社, 2016:956. [CHU X L, LIU H Y, YAN Z C. 近红外光谱分析技术实用手册[M]. Beijing:China Machine Press, 2016:956.]
CHU X L, LIU H Y, YAN Z C. 近红外光谱分析技术实用手册[M]. Beijing: China Machine Press, 2016: 956.
|
[25] |
LI X X, ZHU C G, FU Z T, et al. Rapid detection of soil moisture content based on UAV multispectral image[J]. Spectroscopy and Spectral Analysis,2020,40(4):1238.
|
[26] |
WILLIAMS P C, NORRIS K H. Near-infrared technology in the agricultural and food industries[J]. Starch-Stärke,1988,40(10):408.
|
[27] |
LIU D, WANG E, WANG G, et al. Nondestructive determination of soluble solids content, firmness, and moisture content of "Longxiang" pears during maturation using near-infrared spectroscopy[J]. Journal of Food Processing and Preservation,2022,46(3):e16332.
|
[28] |
SHIRISH KESKAR N, MUDIGERE D, NOCEDAL J, et al. On large-batch training for deep learning:Generalization gap and sharp minima[J/OL]. 2016, arXiv:1609.04836 https://ui.adsabs.harvard.edu/abs/2016arXiv160904836S. 10.48550/arXiv.1609.04836.
|
[29] |
HEATON J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville:Deep learning:The MIT Press, 2016, 800 pp, ISBN:0262035618[J]. Genetic Programming and Evolvable Machines,2017,19:305−307.
|
[30] |
BOUTAMI S, ZHAO N, FAN S. Determining the optimal learning rate in gradient-based electromagnetic optimization using the Shanks transformation in the Lippmann-Schwinger formalism[J]. Optics Letters,2020,45(3):595−598. doi: 10.1364/OL.379375
|
[31] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014,15(1):1929−1958.
|
[32] |
谈爱玲, 王晓斯, 楚振原, 等. 基于近红外光谱融合与深度学习的玉米成分定量建模方法[J]. 食品与发酵工业,2020,46(23):213−219. [TAN A L, WANG X S, CHU Z Y, et al. Research on quantitative modeling method of maize composition based on near infrared spectrum fusion and deep learning[J]. Food and Fermentation Industries,2020,46(23):213−219.]
TAN A L, WANG X S, CHU Z Y, et al. Research on quantitative modeling method of maize composition based on near infrared spectrum fusion and deep learning[J]. Food and Fermentation Industries, 2020, 46(23): 213−219.
|
[33] |
沈晔. 基于高光谱成像技术的干贝水分含量快速检测研究[D]. 杭州:浙江大学, 2017. [SHEN Y. Rapid determination of the moisture content in dried scallop based on hyperspectral imaging[D]. Hangzhou:Zhejiang University, 2017.]
SHEN Y. Rapid determination of the moisture content in dried scallop based on hyperspectral imaging[D]. Hangzhou: Zhejiang University, 2017.
|
[34] |
JIANG H, ZHOU Y, ZHANG C, et al. Evaluation of dual-band near-infrared spectroscopy and chemometric analysis for rapid quantification of multi-quality parameters of soy sauce stewed meat[J]. Foods,2023,12(15):2882. doi: 10.3390/foods12152882
|