Citation: | CHENG Xiaodong, LIU Wei, YANG Chunyan, et al. Process Intensification Strategies of Foam Fractionation and Its Applications in Food Industry[J]. Science and Technology of Food Industry, 2024, 45(18): 384−393. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100241. |
[1] |
BUCKLEY T, KARANAM K, XU X, et al. Effect of mono-and di-valent cations on PFAS removal from water using foam fractionation-A modelling and experimental study[J]. Separation and Purification Technology,2022,286:120508. doi: 10.1016/j.seppur.2022.120508
|
[2] |
KESHAVARZI B, KRAUSE T, SIKANDAR S, et al. Protein enrichment by foam fractionation:Experiment and modeling[J]. Chemical Engineering Science,2022,256:117715. doi: 10.1016/j.ces.2022.117715
|
[3] |
KUMAR A K, GHOSH P. Removal and recovery of an anionic surfactant in the presence of alcohol by foam fractionation[J]. Industrial & Engineering Chemistry Research,2022,61(21):7349−7360.
|
[4] |
GHOSH R, SAHU A, PUSHPAVANAM S. Removal of trace hexavalent chromium from aqueous solutions by ion foam fractionation[J]. Journal of Hazardous Materials,2019,367:589−598. doi: 10.1016/j.jhazmat.2018.12.105
|
[5] |
AMBREEN R, SARFRAZ S, QAMAR F, et al. The use of surface active agents for effective removal of dyes/pigments:A perspective review on solubilization and foam fractionation[J]. Journal of Innovative Sciences,2021,7(2):222−228.
|
[6] |
GHOSH R, HAREENDRAN H, SUBRAMANIAM P. Adsorption of fluoroquinolone antibiotics at the gas-liquid interface using ionic surfactants[J]. Langmuir,2019,35(39):12839−12850. doi: 10.1021/acs.langmuir.9b02431
|
[7] |
SMITH S J, WIBERG K, MCCLEAF P, et al. pilot-scale continuous foam fractionation for the removal of per-and polyfluoroalkyl substances (PFAS) from landfill leachate[J]. ACS Es&t Water,2022,2(5):841−851.
|
[8] |
刘丹宇, 张怡, 刘伟, 等. 超声波辅助泡沫分离回收溶液中牛血清白蛋白的性质研究[J]. 食品工业科技,2021,42(6):67−72,87. [LIU D Y, ZHANG Y, LIU W, et al. Recovery of bovine serum albumin from its aqueous solution by ultrasonic assisted foam separation[J]. Science and Technology of Food Industry,2021,42(6):67−72,87.]
LIU D Y, ZHANG Y, LIU W, et al. Recovery of bovine serum albumin from its aqueous solution by ultrasonic assisted foam separation[J]. Science and Technology of Food Industry, 2021, 42(6): 67−72,87.
|
[9] |
SRINET S S, BASAK A, GHOSH P, et al. Separation of anionic surfactant in paste form from its aqueous solutions using foam fractionation[J]. Journal of Environmental Chemical Engineering,2017,5(2):1586−1598. doi: 10.1016/j.jece.2017.02.008
|
[10] |
JI Mingdong, LI Haijun, LI Jianping, et al. Effect of mesh size on microscreen filtration combined with foam fractionation for solids removal in recirculating aquacultural seawater[J]. North American Journal of Aquaculture,2020,82(2):215−223. doi: 10.1002/naaq.10147
|
[11] |
SUNKESULA V, KOMMINENI A, MARELLA C, et al. Foam fractionation technology for enrichment and recovery of cheese whey proteins[J]. Asian Journal of Dairy and Food Research,2020,39(3):187−194.
|
[12] |
BLESKEN C C, STRÜMPFLER T, TISO T, et al. (2020). Uncoupling foam fractionation and foam adsorption for enhanced biosurfactant synthesis and recovery[J]. Microorganisms,2020,8(12):2029−2052. doi: 10.3390/microorganisms8122029
|
[13] |
HU Nan, ZHANG Keke, LI Yanfei, et al. Glycine betaine enhanced foam separation for recovering and enriching protein from the crude extract of perilla seed meal[J]. Separation and Purification Technology,2021,276:118712. doi: 10.1016/j.seppur.2021.118712
|
[14] |
DOMĺNGUEZ-ARCA V, SABĺN J, TABOADA P, et al. Micellization thermodynamic behavior of gemini cationic surfactants. Modeling its adsorption at air/water interface[J]. Journal of Molecular Liquids,2020,308:113100. doi: 10.1016/j.molliq.2020.113100
|
[15] |
GRASSIA P, TORRES-ULLOA C. A model for foam fractionation with spatially varying bubble size[J]. Chemical Engineering Science,2023,281:119163. doi: 10.1016/j.ces.2023.119163
|
[16] |
GHARBI N, LABBAFI M. Influence of treatment-induced modification of egg white proteins on foaming properties[J]. Food Hydrocolloids,2019,90:72−81. doi: 10.1016/j.foodhyd.2018.11.060
|
[17] |
胡滨, 朱海兰, 吴兆亮. 气体分布器孔径对泡沫分离过程影响的研究[J]. 高校化学工程学报,2014,28(2):246−251. [HU B, ZHU H L, WU Z L. The effect of pore size of gas distributor on foam separation process[J]. Journal of Chemical Engineering of Chinese Universities,2014,28(2):246−251.] doi: 10.3969/j.issn.1003-9015.2014.02.008
HU B, ZHU H L, WU Z L. The effect of pore size of gas distributor on foam separation process[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(2): 246−251. doi: 10.3969/j.issn.1003-9015.2014.02.008
|
[18] |
MA Shuren, HAN Yong, ZHANG Ying, et al. Electrically enhanced activity of cationic surfactant for the bubble surface modification of solvent sublation to remove acetaminophen from water[J]. Journal of Molecular Liquids,2022,362:119700. doi: 10.1016/j.molliq.2022.119700
|
[19] |
ZHANG Pan, CAO Xuewen, LI Xiang, et al. Microscopic mechanisms of inorganic salts affecting the performance of aqueous foams with sodium dodecyl sulfate:View from the gas-liquid interface[J]. Journal of Molecular Liquids,2021,343:117488. doi: 10.1016/j.molliq.2021.117488
|
[20] |
王梅, 姚轶俊, 刘昆仑, 等. 离子强度对菜籽分离蛋白气液界面行为及泡沫特性的影响[J]. 中国粮油学报,2021,36(3):28−34. [WANG M, YAO Y J, LIU K L, et al. Effects of ionic strength on gas-liquid interface behavior and foam characteristics of rapeseed protein isolate[J]. Journal of the Chinese Cereals and Oils Association,2021,36(3):28−34.] doi: 10.3969/j.issn.1003-0174.2021.03.006
WANG M, YAO Y J, LIU K L, et al. Effects of ionic strength on gas-liquid interface behavior and foam characteristics of rapeseed protein isolate[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(3): 28−34. doi: 10.3969/j.issn.1003-0174.2021.03.006
|
[21] |
GERKEN B M, WATTENBACH C, LINKE D, et al. Tweezing-adsorptive bubble separation. Analytical method for the selective and high enrichment of metalloenzymes[J]. Analytical Chemistry,2005,77(19):6113−6117. doi: 10.1021/ac050977s
|
[22] |
ZHANG Yi, DI Ruipeng, ZHANG Huixin, et al. Effective recovery of casein from its aqueous solution by ultrasonic treatment assisted foam fractionation:Inhibiting molecular aggregation[J]. Journal of Food Engineering,2020,284:110042. doi: 10.1016/j.jfoodeng.2020.110042
|
[23] |
LIU Wei, WU Zhaoliang, WANG Yanji, et al. Modified β-CD-Cu ion complex and yam mucilage assisted batch foam fractionation for separating puerarin from Ge-gen (Radix puerariae)[J]. Separation and Purification Technology,2017,175:194−202. doi: 10.1016/j.seppur.2016.11.039
|
[24] |
KUMAR A K, RAWAT N, GHOSH P. Removal and recovery of a cationic surfactant from its aqueous solution by foam fractionation[J]. Journal of Environmental Chemical Engineering,2020,8(2):103555. doi: 10.1016/j.jece.2019.103555
|
[25] |
BANDO Y, KUZE T, SUGIMOTO T, et al. Development of bubble column for foam separation[J]. Korean Journal of Chemical Engineering,2000,17:597−599. doi: 10.1007/BF02707173
|
[26] |
WANG Lianjie, WU Zhaoliang, ZHAO Bin, et al. Enhancing the adsorption of the proteins in the soy whey wastewater using foam separation column fitted with internal baffles[J]. Journal of Food Engineering,2013,119(2):377−384. doi: 10.1016/j.jfoodeng.2013.06.004
|
[27] |
张哲, 吴兆亮, 龙延, 等. 垂直筛板构件强化SDS在泡沫分离液相吸附的研究[J]. 高校化学工程学报,2015,29(3):538−543. [ZHANG Z, WU Z L, LONG Y, et al. Enhancement of interfacial adsorption of SDS in foam separation columns with vertical sieve tray internal[J]. Journal of Chemical Engineering of Chinese Universities,2015,29(3):538−543.] doi: 10.3969/j.issn.1003-9015.2015.03.006
ZHANG Z, WU Z L, LONG Y, et al. Enhancement of interfacial adsorption of SDS in foam separation columns with vertical sieve tray internal[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(3): 538−543. doi: 10.3969/j.issn.1003-9015.2015.03.006
|
[28] |
DUIGNAN T T. The surface potential explains ion specific bubble coalescence inhibition[J]. Journal of Colloid and Interface Science,2021,600:338−343. doi: 10.1016/j.jcis.2021.04.144
|
[29] |
SAINT-JALMES A, TRÉGOUËT C. Foam coarsening under a steady shear:interplay between bubble rearrangement and film thinning dynamics[J]. Soft Matter,2023,19(11):2090−2098. doi: 10.1039/D2SM01618D
|
[30] |
Yan Jin, Wu Zhaoliang, Zhao Yanli, et al. Separation of tea saponin by two-stage foam fractionation[J]. Separation and Purification Technology,2011,80(2):300−305. doi: 10.1016/j.seppur.2011.05.010
|
[31] |
LINK D, ZORN H, GERKEN B, et al. Foam fractionation of exo-lipases from a growing fungus (Pleurotus sapidus)[J]. Lipids,2005,40(3):323−327. doi: 10.1007/s11745-005-1389-x
|
[32] |
LI Juan, WU Zhaoliang, LI Rui. Technology of streptomycin sulfate separation by two-stage foam separation[J]. Biotechnology Progress,2012,28(3):733−739. doi: 10.1002/btpr.1543
|
[33] |
KOEHLER S A, HILGENFELDT S, STONE H A. Foam drainage on the microscale:I. Modeling flow through single Plateau borders[J]. Journal of Colloid and Interface Science,2004,276(2):420−438. doi: 10.1016/j.jcis.2003.12.061
|
[34] |
WANG Yong, WU Zhaoliang, LI Rui, et al. Enhancing foam drainage using inclined foam channels of different angles for recovering the protein from whey wastewater[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,419:28−36.
|
[35] |
LIU Zongmin, WU Zhaolaing, LI Rui, et al. Two-stage foam separation technology for recovering potato protein from potato processing wastewater using the column with the spiral internal component[J]. Journal of Food Engineering,2013,114(2):192−198. doi: 10.1016/j.jfoodeng.2012.08.011
|
[36] |
LU Ke, LI Rui, WU Zhaoliang, et al. Wall effect on rising foam drainage and its application to foam separation[J]. Separation and Purification Technology,2013,118:710−715. doi: 10.1016/j.seppur.2013.07.024
|
[37] |
LI Na, LIU Wei, WU Zhaoliang, et al. Recovery of silk sericin from the filature wastewater by using a novel foam fractionation column[J]. Chemical Engineering and Processing-Process Intensification,2018,129:37−42. doi: 10.1016/j.cep.2018.04.027
|
[38] |
LIU Wei, ZHANG Mengwei, LÜ Yanyan, et al. Foam fractionation for recovering whey soy protein from whey wastewater:Strengthening foam drainage using a novel internal component with superhydrophobic surface[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,78:39−44. doi: 10.1016/j.jtice.2017.05.027
|
[39] |
WU Zhaoliang, QIAN Shaoyu, ZHENG Huijie, et al. A drainage-enhancing device for foam fractionation of proteins[J]. Chinese Science Bulletin,2010,55:1213−1220. doi: 10.1007/s11434-010-0110-x
|
[40] |
LI Hongzhen, WU Zhaoliang, LIU Wei, et al. Recovery of yam mucilage from the yam starch processing wastewater by using a novel foam fractionation column[J]. Separation and Purification Technology,2016,171:26−33. doi: 10.1016/j.seppur.2016.07.005
|
[41] |
JIA Lei, LIU Wei, CAO Jilin, et al. Recovery of nanoparticles from wastewater by foam fractionation:Regulating bubble size distribution for strengthening foam drainage[J]. Journal of Environmental Chemical Engineering,2021,9(4):105383. doi: 10.1016/j.jece.2021.105383
|
[42] |
JIA Lei, LIU Wei, CAO Jilin, et al. Multi-walled carbon nanotubes as collector for the removal of cationic red X-GRL from wastewater by foam fractionation:shortcoming and remedy[J]. Journal of Environmental Chemical Engineering,2022,10(3):107659. doi: 10.1016/j.jece.2022.107659
|
[43] |
LIU Shixiang, LI Zhihua, YU Bing, et al. Recent advances on protein separation and purification methods[J]. Advances in Colloid and Interface Science,2020,284:102254. doi: 10.1016/j.cis.2020.102254
|
[44] |
SHRESTHA S, VAN'T HAG L, HARITOS V S, et al. Lentil and mungbean protein isolates:Processing, functional properties, and potential food applications[J]. Food Hydrocolloids,2023,135:108142. doi: 10.1016/j.foodhyd.2022.108142
|
[45] |
DACHMANN E, NOBIS V, KULOZIK U, et al. Surface and foaming properties of potato proteins:Impact of protein concentration, pH value and ionic strength[J]. Food Hydrocolloids,2020,107:105981. doi: 10.1016/j.foodhyd.2020.105981
|
[46] |
VARGO K B, STAHL P, HWANG B, et al. Surfactant impact on interfacial protein aggregation and utilization of surface tension to predict surfactant requirements for biological formulations[J]. Molecular Pharmaceutics,2020,18(1):148−157.
|
[47] |
隋成博, 张炜, 乜世成, 等. 藜麦蛋白泡沫分离工艺的优化及功能特性分析[J]. 精细化工,2022,39(11):2312−2320. [SUI C B, ZHANG W, NIE S C, et al. Optimization and function characteristics analysis of foam fractionation of quinoa protein[J]. Fine Chemicals,2022,39(11):2312−2320.]
SUI C B, ZHANG W, NIE S C, et al. Optimization and function characteristics analysis of foam fractionation of quinoa protein[J]. Fine Chemicals, 2022, 39(11): 2312−2320.
|
[48] |
李领轩, 张炜, 陈元涛, 等. 亚麻籽饼粕中亚麻蛋白的初步泡沫分离[J]. 河南工业大学学报,2015,36(1):55−61. [LI L X, ZHANG W, CHEN Y T, et al. Preliminary separation of flaxseed protein from flaxseed meal[J]. Journal of Henan University of Technology,2015,36(1):55−61.]
LI L X, ZHANG W, CHEN Y T, et al. Preliminary separation of flaxseed protein from flaxseed meal[J]. Journal of Henan University of Technology, 2015, 36(1): 55−61.
|
[49] |
宋林, 张炜, 荆永康, 等. 裸藻蛋白泡沫分离的工艺优化及功能特性分析[J]. 精细化工,2023,40(6):1340−1349. [SONG L, ZHANG W, JING Y K, et al. Process optimization and functional characteristics analysis of Euglena protein foam separation[J]. Fine Chemicals,2023,40(6):1340−1349.]
SONG L, ZHANG W, JING Y K, et al. Process optimization and functional characteristics analysis of Euglena protein foam separation[J]. Fine Chemicals, 2023, 40(6): 1340−1349.
|
[50] |
王珊珊. 泡沫法分离纯化苦荞叶蛋白工艺研究[J]. 食品工业,2018,39(2):88−91. [WANG S S. Research on isolate and purify process of protein from buckwheat leaf by foam method[J]. The Food Industry,2018,39(2):88−91.]
WANG S S. Research on isolate and purify process of protein from buckwheat leaf by foam method[J]. The Food Industry, 2018, 39(2): 88−91.
|
[51] |
路帅, 孙培冬, 季晓彤, 等. 杏仁蛋白的两级泡沫分离工艺优化[J]. 食品工业科技,2018,39(12):200−204. [LU S, SUN P D, JI X T, et al. Optimization of two-stage foam separation of almond protein[J]. Science and Technology of Food Industry,2018,39(12):200−204.]
LU S, SUN P D, JI X T, et al. Optimization of two-stage foam separation of almond protein[J]. Science and Technology of Food Industry, 2018, 39(12): 200−204.
|
[52] |
刘龙, 张炜, 陈元涛, 等. 菠菜叶蛋白泡沫法分离工艺的优化[J]. 食品与机械,2017,33(6):169−175. [LIU L, ZHANG W, CHEN Y T, et al. Optimization on foam separation process for spinach leaf protein[J]. Food & Machinery,2017,33(6):169−175.]
LIU L, ZHANG W, CHEN Y T, et al. Optimization on foam separation process for spinach leaf protein[J]. Food & Machinery, 2017, 33(6): 169−175.
|
[53] |
刘海彬, 张炜, 陈元涛, 等. 泡沫法分离苜蓿叶蛋白工艺优化[J]. 农业工程学报,2016,32(9):271−276. [LIU H B, ZHANG W, CHEN Y T, et al. Technology optimization of Medicago sativa leaf protein separation with foam fractionation[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(9):271−276.] doi: 10.11975/j.issn.1002-6819.2016.09.038
LIU H B, ZHANG W, CHEN Y T, et al. Technology optimization of Medicago sativa leaf protein separation with foam fractionation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 271−276. doi: 10.11975/j.issn.1002-6819.2016.09.038
|
[54] |
WU Zhaoliang, YIN Hao, LIU Wei, et al. Xanthan gum assisted foam fractionation for the recovery of casein from the dairy wastewater[J]. Preparative Biochemistry & Biotechnology,2020,50(1):37−46.
|
[55] |
LI Rui, JI Xintong, ZHU Youshuang, et al. Precipitation of proteins from soybean whey wastewater by successive foaming and defoaming[J]. Chemical Engineering and Processing-Process Intensification,2018,128:124−131. doi: 10.1016/j.cep.2018.04.012
|
[56] |
LIU Long, ZHANG Wei, YU Xiaodong, et al. Process optimization for foam separation of yak whey protein by response surface methodology[J]. Separation Science and Technology,2018,53(14):2327−2337. doi: 10.1080/01496395.2018.1447581
|
[57] |
LI Rui, Ding Linlin, Wu Zhaoliang, et al. β-cyclodextrin assisted two-stage foam fractionation of bromelain from the crude extract of pineapple peels[J]. Industrial Crops and Products,2016,94:233−239. doi: 10.1016/j.indcrop.2016.08.046
|
[58] |
ZHANG Yuran, ZHU Youshuang, LIU Zhanyan, et al. (2020). β-Cyclodextrin and ultrasound-assisted enzyme renaturation for foam fractionation of laccase from fermentation broth of Trametes hirsuta 18[J]. Journal of Molecular Liquids,2020,298:112028. doi: 10.1016/j.molliq.2019.112028
|
[59] |
高迎迎, 龚菊梅, 付恩桃, 等. “沙漏型”泡沫塔分离纳豆激酶的工艺研究[J]. 新乡学院学报,2021,38(12):13−18. [GAO Y Y, GONG J M, FU E T, et al. Technical study on foam separation of nattokinase by the hourglass-shaped column[J]. Journal of Xinxiang University,2021,38(12):13−18.] doi: 10.3969/j.issn.1674-3326.2021.12.004
GAO Y Y, GONG J M, FU E T, et al. Technical study on foam separation of nattokinase by the hourglass-shaped column[J]. Journal of Xinxiang University, 2021, 38(12): 13−18. doi: 10.3969/j.issn.1674-3326.2021.12.004
|
[60] |
PAN Deng, WANG Linqiang, CHEN Congheng, et al. Isolation and characterization of a hyperbranched proteoglycan from Ganoderma lucidum for anti-diabetes[J]. Carbohydrate Polymers,2015,117:106−114. doi: 10.1016/j.carbpol.2014.09.051
|
[61] |
陈亮, 张炜, 陈元涛, 等. 泡沫分离法纯化枸杞多糖及其动力学过程分析[J]. 食品科学,2015,36(8):29−36. [CHEN L, ZHANG W, CHEN Y T, et al. Purification of Lycium barbarum polysaccharides by foam separation and kinetic analysis of the process[J]. Food Science,2015,36(8):29−36.] doi: 10.7506/spkx1002-6630-201508006
CHEN L, ZHANG W, CHEN Y T, et al. Purification of Lycium barbarum polysaccharides by foam separation and kinetic analysis of the process[J]. Food Science, 2015, 36(8): 29−36. doi: 10.7506/spkx1002-6630-201508006
|
[62] |
ZHENG Huijie, HAO Mengmeng, LIU Wei, et al. Foam fractionation for the concentration of exopolysaccharides produced by repeated batch fermentation of Cordyceps militaris[J]. Separation and Purification Technology,2019,210:682−689. doi: 10.1016/j.seppur.2018.08.063
|
[63] |
GÓRAL I, WOJCIECHOWSKI K. Surface activity and foaming properties of saponin-rich plants extracts[J]. Advances in Colloid and Interface Science,2020,279:102145. doi: 10.1016/j.cis.2020.102145
|
[64] |
HERRERA T, NAVARRO DEL HIERRO J, FORNARI T, et al. Acid hydrolysis of saponin-rich extracts of quinoa, lentil, fenugreek and soybean to yield sapogenin-rich extracts and other bioactive compounds[J]. Journal of the Science of Food and Agriculture,2019,99(6):3157−3167. doi: 10.1002/jsfa.9531
|
[65] |
CHEN Xiaowei, YIN Wenjun, YANG Danxia, et al. One-pot ultrasonic cavitational emulsification of phytosterols oleogel-based flavor emulsions and oil powder stabilized by natural saponin[J]. Food Research International,2021,150:110757. doi: 10.1016/j.foodres.2021.110757
|
[66] |
于素素, 马迪, 曹宁, 等. 响应面法优化泡沫分离芦笋加工废水中皂苷工艺[J]. 食品工业,2023,44(9):6−11. [YU S S, MA D, CAO N, et al. Optimization of foam separation of saponins from asparagus processing wastewater by response surface methodology[J]. Food Industry,2023,44(9):6−11.]
YU S S, MA D, CAO N, et al. Optimization of foam separation of saponins from asparagus processing wastewater by response surface methodology[J]. Food Industry, 2023, 44(9): 6−11.
|
[67] |
王志娟, 张炜, 甘文梅, 等. 泡沫分离法纯化葫芦巴中属于皂苷及抗氧化性的研究[J]. 中国粮油学报,2021,36(11):144−150,161. [WANG Z J, ZHANG W, GAN W M, et al. Foam fractionation optimization and antioxidant activity studies of dioscin from trigonella foenum-graecum[J]. Journal of the Chinese Cereals and Oils Association,2021,36(11):144−150,161.] doi: 10.3969/j.issn.1003-0174.2021.11.022
WANG Z J, ZHANG W, GAN W M, et al. Foam fractionation optimization and antioxidant activity studies of dioscin from trigonella foenum-graecum[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(11): 144−150,161. doi: 10.3969/j.issn.1003-0174.2021.11.022
|
[68] |
赵悦, 史攀恒, 杨飞. 泡沫分离法分离桔梗皂苷的工艺研究[J]. 广东化工,2016,43(15):51−53,59. [ZHAO Y, SHI P H, YANG F. Study on separation conditions of platycodins by foam fractionation[J]. Guangdong Chemical Industry,2016,43(15):51−53,59.] doi: 10.3969/j.issn.1007-1865.2016.15.024
ZHAO Y, SHI P H, YANG F. Study on separation conditions of platycodins by foam fractionation[J]. Guangdong Chemical Industry, 2016, 43(15): 51−53,59. doi: 10.3969/j.issn.1007-1865.2016.15.024
|
[69] |
高中超, 张炜, 陈元涛, 等. 响应面试验优化泡沫分离黄姜中薯蓣皂苷工艺[J]. 食品科学,2016,37(8):26−31. [GAO Z C, ZHANG W, CHEN Y T, et al. Optimization of foam separation of dioscin from Dioscorea zingiberensis C. H. wright by response surface methodology[J]. Food Science,2016,37(8):26−31.] doi: 10.7506/spkx1002-6630-201608005
GAO Z C, ZHANG W, CHEN Y T, et al. Optimization of foam separation of dioscin from Dioscorea zingiberensis C. H. wright by response surface methodology[J]. Food Science, 2016, 37(8): 26−31. doi: 10.7506/spkx1002-6630-201608005
|
[70] |
JIANG Jianxing, WU Zhaoliang, LIU Wei, et al. Separation of soybean saponins from soybean meal by a technology of foam fractionation and resin adsorption[J]. Preparative Biochemistry and Biotechnology,2016,46(4):346−353. doi: 10.1080/10826068.2015.1031394
|
[71] |
LI Rui, WU Zhao Liang, WANG Yan Ji, et al. Separation of total saponins from the pericarp of Sapindus mukorossi Gaerten. by foam fractionation[J]. Industrial Crops and Products,2013,51:163−170. doi: 10.1016/j.indcrop.2013.08.079
|
[72] |
MAHFUZ S, SHANG Q, PIAO X. Phenolic compounds as natural feed additives in poultry and swine diets:A review[J]. Journal of Animal Science and Biotechnology,2021,12(1):1−18. doi: 10.1186/s40104-020-00531-5
|
[73] |
LIU Wei, ZHANG Hui Xin, WU Zhao Liang, et al. Recovery of isoflavone aglycones from soy whey wastewater using foam fractionation and acidic hydrolysis[J]. Journal of Agricultural and Food Chemistry,2013,61(30):7366−7372. doi: 10.1021/jf401693m
|
[74] |
LIU Wei, WU Zhaoliang, WANG Yanji, et al. Isolation of soy whey proteins from isoflavones in the concentrated solution using foam fractionation[J]. Separation and Purification Technology,2015,149:31−37. doi: 10.1016/j.seppur.2015.05.010
|
[75] |
JIAO Meng, WU Zhao Liang, LIU Yan, et al. Surfactant‐assisted separation of ginkgo flavonoids from Ginkgo biloba leaves using leaching and foam fractionation[J]. Asia-Pacific Journal of Chemical Engineering,2016,11(5):664−672.
|
[76] |
LIU Wei, HE Zhen, YIN Hao, et al. Maillard reaction products for strengthening the recovery of trans-resveratrol from the muscat grape pomace by alkaline extraction and foam fractionation[J]. Separation and Purification Technology,2021,256:117754. doi: 10.1016/j.seppur.2020.117754
|
[77] |
ZHONG Lei, MA Ning, WU Yiliang, et al. Characterization and functional evaluation of oat protein isolate-Pleurotus ostreatus β-glucan conjugates formed via Maillard reaction[J]. Food Hydrocolloids,2019,87:459−469. doi: 10.1016/j.foodhyd.2018.08.034
|
[78] |
MATAVOS-ARAMYAN S, GHAZI-MIRSAEED M, SAEEDI-EMADI A, et al. Influence of the process parameters on the foam fractionation treatment of olive mill wastewater[J]. Scientia Iranica,2016,23(6):2820−2827. doi: 10.24200/sci.2016.3992
|
[79] |
KHELISSA S, CHIHIB N E, GHARSALLAOUI A. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative[J]. Archives of Microbiology,2021,203:465−480. doi: 10.1007/s00203-020-02054-z
|
[80] |
WANG Yinfeng, NAN Fangfang, ZHENG Huijie, et al. Effects of temperature and trehalose on foam separation of nisin from the culture broth produced by Lactococcus lactis subspecies lactis W28[J]. Journal of Dairy Science,2012,95(10):5588−5596. doi: 10.3168/jds.2012-5709
|
[81] |
ZHENG Huijie, ZHANG Da, GUO Kaimin, et al. Online recovery of nisin during fermentation coupling with foam fractionation[J]. Journal of Food Engineering,2015,162:25−30. doi: 10.1016/j.jfoodeng.2015.04.006
|