CHENG Xiaodong, LIU Wei, YANG Chunyan, et al. Process Intensification Strategies of Foam Fractionation and Its Applications in Food Industry[J]. Science and Technology of Food Industry, 2024, 45(18): 384−393. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100241.
Citation: CHENG Xiaodong, LIU Wei, YANG Chunyan, et al. Process Intensification Strategies of Foam Fractionation and Its Applications in Food Industry[J]. Science and Technology of Food Industry, 2024, 45(18): 384−393. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100241.

Process Intensification Strategies of Foam Fractionation and Its Applications in Food Industry

More Information
  • Received Date: October 31, 2023
  • Available Online: July 23, 2024
  • Foam fractionation is a green and economical primary separation technique and it has excellent application prospect in the field of food industry. However, it is difficult to simultaneously obtain the high values of enrichment ratio and recovery percentage in a batch operation of foam fractionation due to the opposite effects of operating parameters on interfacial adsorption and foam drainage. In order to solve this problem, multiple process intensification strategies of foam fractionation are developed. In this work, the current studies on the intensification methods of interfacial adsorption and foam drainage were firstly reviewed. The advantages and disadvantages of these methods are analyzed. Subsequently, the research progress of foam fractionation in the separation of proteins, enzymes, saponins, polyphenols and biological preservatives are summarized. Based on the literature review and problem analysis, three future research respects are proposed to promote the industrial application of foam fractionation: Developing new methods which would simultaneously improve interfacial adsorption and foam drainage, designing new collectors with strong binding specificity for non-surface-active materials and good reusability, and inhibiting protein denaturation during desorption process.
  • loading
  • [1]
    BUCKLEY T, KARANAM K, XU X, et al. Effect of mono-and di-valent cations on PFAS removal from water using foam fractionation-A modelling and experimental study[J]. Separation and Purification Technology,2022,286:120508. doi: 10.1016/j.seppur.2022.120508
    [2]
    KESHAVARZI B, KRAUSE T, SIKANDAR S, et al. Protein enrichment by foam fractionation:Experiment and modeling[J]. Chemical Engineering Science,2022,256:117715. doi: 10.1016/j.ces.2022.117715
    [3]
    KUMAR A K, GHOSH P. Removal and recovery of an anionic surfactant in the presence of alcohol by foam fractionation[J]. Industrial & Engineering Chemistry Research,2022,61(21):7349−7360.
    [4]
    GHOSH R, SAHU A, PUSHPAVANAM S. Removal of trace hexavalent chromium from aqueous solutions by ion foam fractionation[J]. Journal of Hazardous Materials,2019,367:589−598. doi: 10.1016/j.jhazmat.2018.12.105
    [5]
    AMBREEN R, SARFRAZ S, QAMAR F, et al. The use of surface active agents for effective removal of dyes/pigments:A perspective review on solubilization and foam fractionation[J]. Journal of Innovative Sciences,2021,7(2):222−228.
    [6]
    GHOSH R, HAREENDRAN H, SUBRAMANIAM P. Adsorption of fluoroquinolone antibiotics at the gas-liquid interface using ionic surfactants[J]. Langmuir,2019,35(39):12839−12850. doi: 10.1021/acs.langmuir.9b02431
    [7]
    SMITH S J, WIBERG K, MCCLEAF P, et al. pilot-scale continuous foam fractionation for the removal of per-and polyfluoroalkyl substances (PFAS) from landfill leachate[J]. ACS Es&t Water,2022,2(5):841−851.
    [8]
    刘丹宇, 张怡, 刘伟, 等. 超声波辅助泡沫分离回收溶液中牛血清白蛋白的性质研究[J]. 食品工业科技,2021,42(6):67−72,87. [LIU D Y, ZHANG Y, LIU W, et al. Recovery of bovine serum albumin from its aqueous solution by ultrasonic assisted foam separation[J]. Science and Technology of Food Industry,2021,42(6):67−72,87.]

    LIU D Y, ZHANG Y, LIU W, et al. Recovery of bovine serum albumin from its aqueous solution by ultrasonic assisted foam separation[J]. Science and Technology of Food Industry, 2021, 42(6): 67−72,87.
    [9]
    SRINET S S, BASAK A, GHOSH P, et al. Separation of anionic surfactant in paste form from its aqueous solutions using foam fractionation[J]. Journal of Environmental Chemical Engineering,2017,5(2):1586−1598. doi: 10.1016/j.jece.2017.02.008
    [10]
    JI Mingdong, LI Haijun, LI Jianping, et al. Effect of mesh size on microscreen filtration combined with foam fractionation for solids removal in recirculating aquacultural seawater[J]. North American Journal of Aquaculture,2020,82(2):215−223. doi: 10.1002/naaq.10147
    [11]
    SUNKESULA V, KOMMINENI A, MARELLA C, et al. Foam fractionation technology for enrichment and recovery of cheese whey proteins[J]. Asian Journal of Dairy and Food Research,2020,39(3):187−194.
    [12]
    BLESKEN C C, STRÜMPFLER T, TISO T, et al. (2020). Uncoupling foam fractionation and foam adsorption for enhanced biosurfactant synthesis and recovery[J]. Microorganisms,2020,8(12):2029−2052. doi: 10.3390/microorganisms8122029
    [13]
    HU Nan, ZHANG Keke, LI Yanfei, et al. Glycine betaine enhanced foam separation for recovering and enriching protein from the crude extract of perilla seed meal[J]. Separation and Purification Technology,2021,276:118712. doi: 10.1016/j.seppur.2021.118712
    [14]
    DOMĺNGUEZ-ARCA V, SABĺN J, TABOADA P, et al. Micellization thermodynamic behavior of gemini cationic surfactants. Modeling its adsorption at air/water interface[J]. Journal of Molecular Liquids,2020,308:113100. doi: 10.1016/j.molliq.2020.113100
    [15]
    GRASSIA P, TORRES-ULLOA C. A model for foam fractionation with spatially varying bubble size[J]. Chemical Engineering Science,2023,281:119163. doi: 10.1016/j.ces.2023.119163
    [16]
    GHARBI N, LABBAFI M. Influence of treatment-induced modification of egg white proteins on foaming properties[J]. Food Hydrocolloids,2019,90:72−81. doi: 10.1016/j.foodhyd.2018.11.060
    [17]
    胡滨, 朱海兰, 吴兆亮. 气体分布器孔径对泡沫分离过程影响的研究[J]. 高校化学工程学报,2014,28(2):246−251. [HU B, ZHU H L, WU Z L. The effect of pore size of gas distributor on foam separation process[J]. Journal of Chemical Engineering of Chinese Universities,2014,28(2):246−251.] doi: 10.3969/j.issn.1003-9015.2014.02.008

    HU B, ZHU H L, WU Z L. The effect of pore size of gas distributor on foam separation process[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(2): 246−251. doi: 10.3969/j.issn.1003-9015.2014.02.008
    [18]
    MA Shuren, HAN Yong, ZHANG Ying, et al. Electrically enhanced activity of cationic surfactant for the bubble surface modification of solvent sublation to remove acetaminophen from water[J]. Journal of Molecular Liquids,2022,362:119700. doi: 10.1016/j.molliq.2022.119700
    [19]
    ZHANG Pan, CAO Xuewen, LI Xiang, et al. Microscopic mechanisms of inorganic salts affecting the performance of aqueous foams with sodium dodecyl sulfate:View from the gas-liquid interface[J]. Journal of Molecular Liquids,2021,343:117488. doi: 10.1016/j.molliq.2021.117488
    [20]
    王梅, 姚轶俊, 刘昆仑, 等. 离子强度对菜籽分离蛋白气液界面行为及泡沫特性的影响[J]. 中国粮油学报,2021,36(3):28−34. [WANG M, YAO Y J, LIU K L, et al. Effects of ionic strength on gas-liquid interface behavior and foam characteristics of rapeseed protein isolate[J]. Journal of the Chinese Cereals and Oils Association,2021,36(3):28−34.] doi: 10.3969/j.issn.1003-0174.2021.03.006

    WANG M, YAO Y J, LIU K L, et al. Effects of ionic strength on gas-liquid interface behavior and foam characteristics of rapeseed protein isolate[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(3): 28−34. doi: 10.3969/j.issn.1003-0174.2021.03.006
    [21]
    GERKEN B M, WATTENBACH C, LINKE D, et al. Tweezing-adsorptive bubble separation. Analytical method for the selective and high enrichment of metalloenzymes[J]. Analytical Chemistry,2005,77(19):6113−6117. doi: 10.1021/ac050977s
    [22]
    ZHANG Yi, DI Ruipeng, ZHANG Huixin, et al. Effective recovery of casein from its aqueous solution by ultrasonic treatment assisted foam fractionation:Inhibiting molecular aggregation[J]. Journal of Food Engineering,2020,284:110042. doi: 10.1016/j.jfoodeng.2020.110042
    [23]
    LIU Wei, WU Zhaoliang, WANG Yanji, et al. Modified β-CD-Cu ion complex and yam mucilage assisted batch foam fractionation for separating puerarin from Ge-gen (Radix puerariae)[J]. Separation and Purification Technology,2017,175:194−202. doi: 10.1016/j.seppur.2016.11.039
    [24]
    KUMAR A K, RAWAT N, GHOSH P. Removal and recovery of a cationic surfactant from its aqueous solution by foam fractionation[J]. Journal of Environmental Chemical Engineering,2020,8(2):103555. doi: 10.1016/j.jece.2019.103555
    [25]
    BANDO Y, KUZE T, SUGIMOTO T, et al. Development of bubble column for foam separation[J]. Korean Journal of Chemical Engineering,2000,17:597−599. doi: 10.1007/BF02707173
    [26]
    WANG Lianjie, WU Zhaoliang, ZHAO Bin, et al. Enhancing the adsorption of the proteins in the soy whey wastewater using foam separation column fitted with internal baffles[J]. Journal of Food Engineering,2013,119(2):377−384. doi: 10.1016/j.jfoodeng.2013.06.004
    [27]
    张哲, 吴兆亮, 龙延, 等. 垂直筛板构件强化SDS在泡沫分离液相吸附的研究[J]. 高校化学工程学报,2015,29(3):538−543. [ZHANG Z, WU Z L, LONG Y, et al. Enhancement of interfacial adsorption of SDS in foam separation columns with vertical sieve tray internal[J]. Journal of Chemical Engineering of Chinese Universities,2015,29(3):538−543.] doi: 10.3969/j.issn.1003-9015.2015.03.006

    ZHANG Z, WU Z L, LONG Y, et al. Enhancement of interfacial adsorption of SDS in foam separation columns with vertical sieve tray internal[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(3): 538−543. doi: 10.3969/j.issn.1003-9015.2015.03.006
    [28]
    DUIGNAN T T. The surface potential explains ion specific bubble coalescence inhibition[J]. Journal of Colloid and Interface Science,2021,600:338−343. doi: 10.1016/j.jcis.2021.04.144
    [29]
    SAINT-JALMES A, TRÉGOUËT C. Foam coarsening under a steady shear:interplay between bubble rearrangement and film thinning dynamics[J]. Soft Matter,2023,19(11):2090−2098. doi: 10.1039/D2SM01618D
    [30]
    Yan Jin, Wu Zhaoliang, Zhao Yanli, et al. Separation of tea saponin by two-stage foam fractionation[J]. Separation and Purification Technology,2011,80(2):300−305. doi: 10.1016/j.seppur.2011.05.010
    [31]
    LINK D, ZORN H, GERKEN B, et al. Foam fractionation of exo-lipases from a growing fungus (Pleurotus sapidus)[J]. Lipids,2005,40(3):323−327. doi: 10.1007/s11745-005-1389-x
    [32]
    LI Juan, WU Zhaoliang, LI Rui. Technology of streptomycin sulfate separation by two-stage foam separation[J]. Biotechnology Progress,2012,28(3):733−739. doi: 10.1002/btpr.1543
    [33]
    KOEHLER S A, HILGENFELDT S, STONE H A. Foam drainage on the microscale:I. Modeling flow through single Plateau borders[J]. Journal of Colloid and Interface Science,2004,276(2):420−438. doi: 10.1016/j.jcis.2003.12.061
    [34]
    WANG Yong, WU Zhaoliang, LI Rui, et al. Enhancing foam drainage using inclined foam channels of different angles for recovering the protein from whey wastewater[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,419:28−36.
    [35]
    LIU Zongmin, WU Zhaolaing, LI Rui, et al. Two-stage foam separation technology for recovering potato protein from potato processing wastewater using the column with the spiral internal component[J]. Journal of Food Engineering,2013,114(2):192−198. doi: 10.1016/j.jfoodeng.2012.08.011
    [36]
    LU Ke, LI Rui, WU Zhaoliang, et al. Wall effect on rising foam drainage and its application to foam separation[J]. Separation and Purification Technology,2013,118:710−715. doi: 10.1016/j.seppur.2013.07.024
    [37]
    LI Na, LIU Wei, WU Zhaoliang, et al. Recovery of silk sericin from the filature wastewater by using a novel foam fractionation column[J]. Chemical Engineering and Processing-Process Intensification,2018,129:37−42. doi: 10.1016/j.cep.2018.04.027
    [38]
    LIU Wei, ZHANG Mengwei, LÜ Yanyan, et al. Foam fractionation for recovering whey soy protein from whey wastewater:Strengthening foam drainage using a novel internal component with superhydrophobic surface[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,78:39−44. doi: 10.1016/j.jtice.2017.05.027
    [39]
    WU Zhaoliang, QIAN Shaoyu, ZHENG Huijie, et al. A drainage-enhancing device for foam fractionation of proteins[J]. Chinese Science Bulletin,2010,55:1213−1220. doi: 10.1007/s11434-010-0110-x
    [40]
    LI Hongzhen, WU Zhaoliang, LIU Wei, et al. Recovery of yam mucilage from the yam starch processing wastewater by using a novel foam fractionation column[J]. Separation and Purification Technology,2016,171:26−33. doi: 10.1016/j.seppur.2016.07.005
    [41]
    JIA Lei, LIU Wei, CAO Jilin, et al. Recovery of nanoparticles from wastewater by foam fractionation:Regulating bubble size distribution for strengthening foam drainage[J]. Journal of Environmental Chemical Engineering,2021,9(4):105383. doi: 10.1016/j.jece.2021.105383
    [42]
    JIA Lei, LIU Wei, CAO Jilin, et al. Multi-walled carbon nanotubes as collector for the removal of cationic red X-GRL from wastewater by foam fractionation:shortcoming and remedy[J]. Journal of Environmental Chemical Engineering,2022,10(3):107659. doi: 10.1016/j.jece.2022.107659
    [43]
    LIU Shixiang, LI Zhihua, YU Bing, et al. Recent advances on protein separation and purification methods[J]. Advances in Colloid and Interface Science,2020,284:102254. doi: 10.1016/j.cis.2020.102254
    [44]
    SHRESTHA S, VAN'T HAG L, HARITOS V S, et al. Lentil and mungbean protein isolates:Processing, functional properties, and potential food applications[J]. Food Hydrocolloids,2023,135:108142. doi: 10.1016/j.foodhyd.2022.108142
    [45]
    DACHMANN E, NOBIS V, KULOZIK U, et al. Surface and foaming properties of potato proteins:Impact of protein concentration, pH value and ionic strength[J]. Food Hydrocolloids,2020,107:105981. doi: 10.1016/j.foodhyd.2020.105981
    [46]
    VARGO K B, STAHL P, HWANG B, et al. Surfactant impact on interfacial protein aggregation and utilization of surface tension to predict surfactant requirements for biological formulations[J]. Molecular Pharmaceutics,2020,18(1):148−157.
    [47]
    隋成博, 张炜, 乜世成, 等. 藜麦蛋白泡沫分离工艺的优化及功能特性分析[J]. 精细化工,2022,39(11):2312−2320. [SUI C B, ZHANG W, NIE S C, et al. Optimization and function characteristics analysis of foam fractionation of quinoa protein[J]. Fine Chemicals,2022,39(11):2312−2320.]

    SUI C B, ZHANG W, NIE S C, et al. Optimization and function characteristics analysis of foam fractionation of quinoa protein[J]. Fine Chemicals, 2022, 39(11): 2312−2320.
    [48]
    李领轩, 张炜, 陈元涛, 等. 亚麻籽饼粕中亚麻蛋白的初步泡沫分离[J]. 河南工业大学学报,2015,36(1):55−61. [LI L X, ZHANG W, CHEN Y T, et al. Preliminary separation of flaxseed protein from flaxseed meal[J]. Journal of Henan University of Technology,2015,36(1):55−61.]

    LI L X, ZHANG W, CHEN Y T, et al. Preliminary separation of flaxseed protein from flaxseed meal[J]. Journal of Henan University of Technology, 2015, 36(1): 55−61.
    [49]
    宋林, 张炜, 荆永康, 等. 裸藻蛋白泡沫分离的工艺优化及功能特性分析[J]. 精细化工,2023,40(6):1340−1349. [SONG L, ZHANG W, JING Y K, et al. Process optimization and functional characteristics analysis of Euglena protein foam separation[J]. Fine Chemicals,2023,40(6):1340−1349.]

    SONG L, ZHANG W, JING Y K, et al. Process optimization and functional characteristics analysis of Euglena protein foam separation[J]. Fine Chemicals, 2023, 40(6): 1340−1349.
    [50]
    王珊珊. 泡沫法分离纯化苦荞叶蛋白工艺研究[J]. 食品工业,2018,39(2):88−91. [WANG S S. Research on isolate and purify process of protein from buckwheat leaf by foam method[J]. The Food Industry,2018,39(2):88−91.]

    WANG S S. Research on isolate and purify process of protein from buckwheat leaf by foam method[J]. The Food Industry, 2018, 39(2): 88−91.
    [51]
    路帅, 孙培冬, 季晓彤, 等. 杏仁蛋白的两级泡沫分离工艺优化[J]. 食品工业科技,2018,39(12):200−204. [LU S, SUN P D, JI X T, et al. Optimization of two-stage foam separation of almond protein[J]. Science and Technology of Food Industry,2018,39(12):200−204.]

    LU S, SUN P D, JI X T, et al. Optimization of two-stage foam separation of almond protein[J]. Science and Technology of Food Industry, 2018, 39(12): 200−204.
    [52]
    刘龙, 张炜, 陈元涛, 等. 菠菜叶蛋白泡沫法分离工艺的优化[J]. 食品与机械,2017,33(6):169−175. [LIU L, ZHANG W, CHEN Y T, et al. Optimization on foam separation process for spinach leaf protein[J]. Food & Machinery,2017,33(6):169−175.]

    LIU L, ZHANG W, CHEN Y T, et al. Optimization on foam separation process for spinach leaf protein[J]. Food & Machinery, 2017, 33(6): 169−175.
    [53]
    刘海彬, 张炜, 陈元涛, 等. 泡沫法分离苜蓿叶蛋白工艺优化[J]. 农业工程学报,2016,32(9):271−276. [LIU H B, ZHANG W, CHEN Y T, et al. Technology optimization of Medicago sativa leaf protein separation with foam fractionation[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(9):271−276.] doi: 10.11975/j.issn.1002-6819.2016.09.038

    LIU H B, ZHANG W, CHEN Y T, et al. Technology optimization of Medicago sativa leaf protein separation with foam fractionation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 271−276. doi: 10.11975/j.issn.1002-6819.2016.09.038
    [54]
    WU Zhaoliang, YIN Hao, LIU Wei, et al. Xanthan gum assisted foam fractionation for the recovery of casein from the dairy wastewater[J]. Preparative Biochemistry & Biotechnology,2020,50(1):37−46.
    [55]
    LI Rui, JI Xintong, ZHU Youshuang, et al. Precipitation of proteins from soybean whey wastewater by successive foaming and defoaming[J]. Chemical Engineering and Processing-Process Intensification,2018,128:124−131. doi: 10.1016/j.cep.2018.04.012
    [56]
    LIU Long, ZHANG Wei, YU Xiaodong, et al. Process optimization for foam separation of yak whey protein by response surface methodology[J]. Separation Science and Technology,2018,53(14):2327−2337. doi: 10.1080/01496395.2018.1447581
    [57]
    LI Rui, Ding Linlin, Wu Zhaoliang, et al. β-cyclodextrin assisted two-stage foam fractionation of bromelain from the crude extract of pineapple peels[J]. Industrial Crops and Products,2016,94:233−239. doi: 10.1016/j.indcrop.2016.08.046
    [58]
    ZHANG Yuran, ZHU Youshuang, LIU Zhanyan, et al. (2020). β-Cyclodextrin and ultrasound-assisted enzyme renaturation for foam fractionation of laccase from fermentation broth of Trametes hirsuta 18[J]. Journal of Molecular Liquids,2020,298:112028. doi: 10.1016/j.molliq.2019.112028
    [59]
    高迎迎, 龚菊梅, 付恩桃, 等. “沙漏型”泡沫塔分离纳豆激酶的工艺研究[J]. 新乡学院学报,2021,38(12):13−18. [GAO Y Y, GONG J M, FU E T, et al. Technical study on foam separation of nattokinase by the hourglass-shaped column[J]. Journal of Xinxiang University,2021,38(12):13−18.] doi: 10.3969/j.issn.1674-3326.2021.12.004

    GAO Y Y, GONG J M, FU E T, et al. Technical study on foam separation of nattokinase by the hourglass-shaped column[J]. Journal of Xinxiang University, 2021, 38(12): 13−18. doi: 10.3969/j.issn.1674-3326.2021.12.004
    [60]
    PAN Deng, WANG Linqiang, CHEN Congheng, et al. Isolation and characterization of a hyperbranched proteoglycan from Ganoderma lucidum for anti-diabetes[J]. Carbohydrate Polymers,2015,117:106−114. doi: 10.1016/j.carbpol.2014.09.051
    [61]
    陈亮, 张炜, 陈元涛, 等. 泡沫分离法纯化枸杞多糖及其动力学过程分析[J]. 食品科学,2015,36(8):29−36. [CHEN L, ZHANG W, CHEN Y T, et al. Purification of Lycium barbarum polysaccharides by foam separation and kinetic analysis of the process[J]. Food Science,2015,36(8):29−36.] doi: 10.7506/spkx1002-6630-201508006

    CHEN L, ZHANG W, CHEN Y T, et al. Purification of Lycium barbarum polysaccharides by foam separation and kinetic analysis of the process[J]. Food Science, 2015, 36(8): 29−36. doi: 10.7506/spkx1002-6630-201508006
    [62]
    ZHENG Huijie, HAO Mengmeng, LIU Wei, et al. Foam fractionation for the concentration of exopolysaccharides produced by repeated batch fermentation of Cordyceps militaris[J]. Separation and Purification Technology,2019,210:682−689. doi: 10.1016/j.seppur.2018.08.063
    [63]
    GÓRAL I, WOJCIECHOWSKI K. Surface activity and foaming properties of saponin-rich plants extracts[J]. Advances in Colloid and Interface Science,2020,279:102145. doi: 10.1016/j.cis.2020.102145
    [64]
    HERRERA T, NAVARRO DEL HIERRO J, FORNARI T, et al. Acid hydrolysis of saponin-rich extracts of quinoa, lentil, fenugreek and soybean to yield sapogenin-rich extracts and other bioactive compounds[J]. Journal of the Science of Food and Agriculture,2019,99(6):3157−3167. doi: 10.1002/jsfa.9531
    [65]
    CHEN Xiaowei, YIN Wenjun, YANG Danxia, et al. One-pot ultrasonic cavitational emulsification of phytosterols oleogel-based flavor emulsions and oil powder stabilized by natural saponin[J]. Food Research International,2021,150:110757. doi: 10.1016/j.foodres.2021.110757
    [66]
    于素素, 马迪, 曹宁, 等. 响应面法优化泡沫分离芦笋加工废水中皂苷工艺[J]. 食品工业,2023,44(9):6−11. [YU S S, MA D, CAO N, et al. Optimization of foam separation of saponins from asparagus processing wastewater by response surface methodology[J]. Food Industry,2023,44(9):6−11.]

    YU S S, MA D, CAO N, et al. Optimization of foam separation of saponins from asparagus processing wastewater by response surface methodology[J]. Food Industry, 2023, 44(9): 6−11.
    [67]
    王志娟, 张炜, 甘文梅, 等. 泡沫分离法纯化葫芦巴中属于皂苷及抗氧化性的研究[J]. 中国粮油学报,2021,36(11):144−150,161. [WANG Z J, ZHANG W, GAN W M, et al. Foam fractionation optimization and antioxidant activity studies of dioscin from trigonella foenum-graecum[J]. Journal of the Chinese Cereals and Oils Association,2021,36(11):144−150,161.] doi: 10.3969/j.issn.1003-0174.2021.11.022

    WANG Z J, ZHANG W, GAN W M, et al. Foam fractionation optimization and antioxidant activity studies of dioscin from trigonella foenum-graecum[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(11): 144−150,161. doi: 10.3969/j.issn.1003-0174.2021.11.022
    [68]
    赵悦, 史攀恒, 杨飞. 泡沫分离法分离桔梗皂苷的工艺研究[J]. 广东化工,2016,43(15):51−53,59. [ZHAO Y, SHI P H, YANG F. Study on separation conditions of platycodins by foam fractionation[J]. Guangdong Chemical Industry,2016,43(15):51−53,59.] doi: 10.3969/j.issn.1007-1865.2016.15.024

    ZHAO Y, SHI P H, YANG F. Study on separation conditions of platycodins by foam fractionation[J]. Guangdong Chemical Industry, 2016, 43(15): 51−53,59. doi: 10.3969/j.issn.1007-1865.2016.15.024
    [69]
    高中超, 张炜, 陈元涛, 等. 响应面试验优化泡沫分离黄姜中薯蓣皂苷工艺[J]. 食品科学,2016,37(8):26−31. [GAO Z C, ZHANG W, CHEN Y T, et al. Optimization of foam separation of dioscin from Dioscorea zingiberensis C. H. wright by response surface methodology[J]. Food Science,2016,37(8):26−31.] doi: 10.7506/spkx1002-6630-201608005

    GAO Z C, ZHANG W, CHEN Y T, et al. Optimization of foam separation of dioscin from Dioscorea zingiberensis C. H. wright by response surface methodology[J]. Food Science, 2016, 37(8): 26−31. doi: 10.7506/spkx1002-6630-201608005
    [70]
    JIANG Jianxing, WU Zhaoliang, LIU Wei, et al. Separation of soybean saponins from soybean meal by a technology of foam fractionation and resin adsorption[J]. Preparative Biochemistry and Biotechnology,2016,46(4):346−353. doi: 10.1080/10826068.2015.1031394
    [71]
    LI Rui, WU Zhao Liang, WANG Yan Ji, et al. Separation of total saponins from the pericarp of Sapindus mukorossi Gaerten. by foam fractionation[J]. Industrial Crops and Products,2013,51:163−170. doi: 10.1016/j.indcrop.2013.08.079
    [72]
    MAHFUZ S, SHANG Q, PIAO X. Phenolic compounds as natural feed additives in poultry and swine diets:A review[J]. Journal of Animal Science and Biotechnology,2021,12(1):1−18. doi: 10.1186/s40104-020-00531-5
    [73]
    LIU Wei, ZHANG Hui Xin, WU Zhao Liang, et al. Recovery of isoflavone aglycones from soy whey wastewater using foam fractionation and acidic hydrolysis[J]. Journal of Agricultural and Food Chemistry,2013,61(30):7366−7372. doi: 10.1021/jf401693m
    [74]
    LIU Wei, WU Zhaoliang, WANG Yanji, et al. Isolation of soy whey proteins from isoflavones in the concentrated solution using foam fractionation[J]. Separation and Purification Technology,2015,149:31−37. doi: 10.1016/j.seppur.2015.05.010
    [75]
    JIAO Meng, WU Zhao Liang, LIU Yan, et al. Surfactant‐assisted separation of ginkgo flavonoids from Ginkgo biloba leaves using leaching and foam fractionation[J]. Asia-Pacific Journal of Chemical Engineering,2016,11(5):664−672.
    [76]
    LIU Wei, HE Zhen, YIN Hao, et al. Maillard reaction products for strengthening the recovery of trans-resveratrol from the muscat grape pomace by alkaline extraction and foam fractionation[J]. Separation and Purification Technology,2021,256:117754. doi: 10.1016/j.seppur.2020.117754
    [77]
    ZHONG Lei, MA Ning, WU Yiliang, et al. Characterization and functional evaluation of oat protein isolate-Pleurotus ostreatus β-glucan conjugates formed via Maillard reaction[J]. Food Hydrocolloids,2019,87:459−469. doi: 10.1016/j.foodhyd.2018.08.034
    [78]
    MATAVOS-ARAMYAN S, GHAZI-MIRSAEED M, SAEEDI-EMADI A, et al. Influence of the process parameters on the foam fractionation treatment of olive mill wastewater[J]. Scientia Iranica,2016,23(6):2820−2827. doi: 10.24200/sci.2016.3992
    [79]
    KHELISSA S, CHIHIB N E, GHARSALLAOUI A. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative[J]. Archives of Microbiology,2021,203:465−480. doi: 10.1007/s00203-020-02054-z
    [80]
    WANG Yinfeng, NAN Fangfang, ZHENG Huijie, et al. Effects of temperature and trehalose on foam separation of nisin from the culture broth produced by Lactococcus lactis subspecies lactis W28[J]. Journal of Dairy Science,2012,95(10):5588−5596. doi: 10.3168/jds.2012-5709
    [81]
    ZHENG Huijie, ZHANG Da, GUO Kaimin, et al. Online recovery of nisin during fermentation coupling with foam fractionation[J]. Journal of Food Engineering,2015,162:25−30. doi: 10.1016/j.jfoodeng.2015.04.006
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (109) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return