YANG Xinru, TANG Jiayue, ZENG Xiaoqun, et al. Probiotics in Alleviating Hyperuricemia: Research Status, Mechanism of Action and Challenges[J]. Science and Technology of Food Industry, 2024, 45(20): 415−425. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120091.
Citation: YANG Xinru, TANG Jiayue, ZENG Xiaoqun, et al. Probiotics in Alleviating Hyperuricemia: Research Status, Mechanism of Action and Challenges[J]. Science and Technology of Food Industry, 2024, 45(20): 415−425. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120091.

Probiotics in Alleviating Hyperuricemia: Research Status, Mechanism of Action and Challenges

More Information
  • Received Date: December 10, 2023
  • Available Online: September 11, 2024
  • Hyperuricemia (HUA) is a chronic metabolic disease, characterized by excessive uric acid in the blood, caused by purine metabolism disorders. Studies show that conventional clinical treatment methods have certain limitations, while probiotics have the characteristics of economical and effectiveness, with few toxic side effects, and relatively high safety for alleviating hyperuricemia. This review mainly elaborates the mechanisms of probiotics in alleviating hyperuricemia, involving repairing the intestinal barrier and regulating the gut microbiota, inhibiting the activity of xanthine oxidase, Accelerating uric acid excretion and promoting the degradation or metabolism of purine. Probiotics have broad application prospects in improving hyperuricemia, and which will be an important mean for alleviating and adjuvanting hyperuricemia in the future. This paper comprehensive reviews the research status, mechanism of action, as well as challenges of probiotics in alleviating hyperuricemia, in order to provide a theoretical basis and new ideas for the development of the related probiotic preparations and nutritional foods that can alleviate hyperuricemia, as well as clinical treatment of hyperuricemia.
  • loading
  • [1]
    WU X H, YOU C G. The biomarkers discovery of hyperuricemia and gout:Proteomics and metabolomics[J]. Peer J,2023,11:e14554.
    [2]
    SUN H L, WU Y W, BIAN H G, et al. Function of uric acid transporters and their inhibitors in hyperuricaemia[J]. Frontiers in Pharmacology,2021,12:667753. doi: 10.3389/fphar.2021.667753
    [3]
    ZHAO H Y, LU Z X, LU Y J. The potential of probiotics in the amelioration of hyperuricemia[J]. Food & Function,2022,13(5):2394−2414.
    [4]
    LIU W J, PENG J, WU Y X, et al. Immune and inflammatory mechanisms and therapeutic targets of gout:An update[J]. International Immunopharmacology,2023,121:110466. doi: 10.1016/j.intimp.2023.110466
    [5]
    MALLA P, KHANAL M P, POKHREL A, et al. Correlation of serum uric acid and lipid profile in patients with type 2 diabetes mellitus[J]. Journal of Nepal Health Research Council,2023,21(1):170−174.
    [6]
    CHEN Y Y, KAO T W, YANG H F, et al. The association of uric acid with the risk of metabolic syndrome, arterial hypertension or diabetes in young subjects-an observational study[J]. Clinica Chimica Acta,2018,478:68−73. doi: 10.1016/j.cca.2017.12.038
    [7]
    KIELSTEIN J T, PONTREMOLI R, BURNIER M. Management of hyperuricemia in patients with chronic kidney disease:a focus on renal protection[J]. Current Hypertension Reports,2020,22(12):102. doi: 10.1007/s11906-020-01116-3
    [8]
    GAMALA M, JACOBS J W. Gout and hyperuricaemia:a worldwide health issue of joints and beyond[Z]. Oxford University Press, 2019, (58)12:2083−2085.
    [9]
    POON S H, HALL H A, ZIMMERMANN B. Approach to the treatment of hyperuricemia[J]. Rhode Island Medical Journal,2009,92(11):359−362.
    [10]
    ZHANG R, GAO S J, ZHU C Y, et al. Characterization of a novel alkaline Arxula adeninivorans urate oxidase expressed in Escherichia coli and its application in reducing uric acid content of food[J]. Food Chemistry,2019,293:254−262. doi: 10.1016/j.foodchem.2019.04.112
    [11]
    VILLEGAS R, XIANG Y B, ELASY T, et al. Purine-rich foods, protein intake, and the prevalence of hyperuricemia:the Shanghai Men’s Health Study[J]. Nutrition, Metabolism and Cardiovascular Diseases,2012,22(5):409−416. doi: 10.1016/j.numecd.2010.07.012
    [12]
    KANEKO K, AOYAGI Y, FUKUUCHI T, et al. Total purine and purine base content of common foodstuffs for facilitating nutritional therapy for gout and hyperuricemia[J]. Biological and Pharmaceutical Bulletin,2014,37(5):709−721. doi: 10.1248/bpb.b13-00967
    [13]
    TAUSCHE A K, JANSEN T L, SCHRÖDER H E, et al. Gout—current diagnosis and treatment[J]. Deutsches Ä rzteblatt International,2009,106(34-35):549−555.
    [14]
    CAO Z H, WEI Z Y, ZHU Q Y, et al. HLA-B* 58:01 allele is associated with augmented risk for both mild and severe cutaneous adverse reactions induced by allopurinol in Han Chinese[J]. Pharmacogenomics,2012,13(10):1193−1201. doi: 10.2217/pgs.12.89
    [15]
    ISHIKAWA T, MAEDA T, HASHIMOTO T, et al. Long-term safety and effectiveness of the xanthine oxidoreductase inhibitor, topiroxostat in Japanese hyperuricemic patients with or without gout:A 54-week open-label, multicenter, post-marketing observational study[J]. Clinical Drug Investigation,2020,40(9):847−859. doi: 10.1007/s40261-020-00941-3
    [16]
    AZEEZ S, N M K, P V. Medicinal plants for hyperuricemia and gout:A review[J]. Journal of Contemporary Medical Practice,2022,4(12):90−95.
    [17]
    MAIUOLO J, OPPEDISANO F, GRATTERI S, et al. Regulation of uric acid metabolism and excretion[J]. International Journal of Cardiology,2016,213:8−14. doi: 10.1016/j.ijcard.2015.08.109
    [18]
    孙琳, 王桂侠, 郭蔚莹. 高尿酸血症研究进展[J]. 中国老年学杂志,2017,37(4):1034−1038. [SUN L, WANG G X, GUO W Y. Research progress in hyperuricemia[J]. Chinese Journal of Gerontology,2017,37(4):1034−1038.] doi: 10.3969/j.issn.1005-9202.2017.04.112

    SUN L, WANG G X, GUO W Y. Research progress in hyperuricemia[J]. Chinese Journal of Gerontology, 2017, 37(4): 1034−1038. doi: 10.3969/j.issn.1005-9202.2017.04.112
    [19]
    PAN L B, HAN P, MA S R, et al. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia[J]. Acta Pharmaceutica Sinica B,2020,10(2):249−261. doi: 10.1016/j.apsb.2019.10.007
    [20]
    DE OLIVEIRA E P, BURINI R C. High plasma uric acid concentration:Causes and consequences[J]. Diabetology & Metabolic Syndrome,2012,4(1):1−7.
    [21]
    SHAN R Q, NING Y, MA Y, et al. Incidence and risk factors of hyperuricemia among 2.5 million Chinese adults during the years 2017–2018[J]. International Journal of Environmental Research and Public Health,2021,18(5):2360. doi: 10.3390/ijerph18052360
    [22]
    YOKOSE C, MCCORMICK N, CHOI H K. The role of diet in hyperuricemia and gout[J]. Current Opinion in Rheumatology,2021,33(2):135−144. doi: 10.1097/BOR.0000000000000779
    [23]
    SUN Y Y, SUN J P, ZHANG P P, et al. Association of dietary fiber intake with hyperuricemia in US adults[J]. Food & Function,2019,10(8):4932−4940.
    [24]
    ZHAO R, LI Z M, SUN Y Q, et al. Engineered Escherichia coli Nissle 1917 with urate oxidase and an oxygen-recycling system for hyperuricemia treatment[J]. Gut Microbes,2022,14(1):2070391. doi: 10.1080/19490976.2022.2070391
    [25]
    SONG D N, ZHAO H H, WANG L L, et al. Ethanol extract of Sophora japonica flower bud, an effective potential dietary supplement for the treatment of hyperuricemia[J]. Food Bioscience,2023,52:102457. doi: 10.1016/j.fbio.2023.102457
    [26]
    ZHANG M, ZHU X X, WU J, et al. Prevalence of hyperuricemia among Chinese adults:findings from two nationally representative cross-sectional surveys in 2015–16 and 2018–19[J]. Frontiers in Immunology,2022,12:791983. doi: 10.3389/fimmu.2021.791983
    [27]
    LI L Z, WANG X M, FENG X J, et al. Effects of a macroporous resin extract of Dendrobium officinale leaves in rats with hyperuricemia induced by anthropomorphic unhealthy lifestyle[J]. Evidence-Based Complementary and Alternative Medicine,2023,2023:9990843. doi: 10.1155/2023/9990843
    [28]
    ANTELO-PAIS P, PRIETO-DÍAZ M Á, MICÓ-PÉREZ R M, et al. Prevalence of hyperuricemia and its association with cardiovascular risk factors and subclinical target organ damage[J]. Journal of Clinical Medicine,2022,12(1):50. doi: 10.3390/jcm12010050
    [29]
    DEHLIN M, JACOBSSON L, RODDY E. Global epidemiology of gout:prevalence, incidence, treatment patterns and risk factors[J]. Nature Reviews Rheumatology,2020,16(7):380−390. doi: 10.1038/s41584-020-0441-1
    [30]
    HUANG J Y, MA Z F, ZHANG Y T, et al. Geographical distribution of hyperuricemia in mainland China:A comprehensive systematic review and meta-analysis[J]. Global Health Research and Policy,2020,5(1):52. doi: 10.1186/s41256-020-00178-9
    [31]
    HILL C, GUARNER F, REID G, et al. Expert consensus document:The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nature Reviews Gastroenterology & Hepatology,2014,11(8):506−514 .
    [32]
    ELISASHVILI V, KACHLISHVILI E, CHIKINDAS M L. Recent advances in the physiology of spore formation for Bacillus probiotic production[J]. Probiotics and Antimicrobial Proteins,2019,11(3):731−747. doi: 10.1007/s12602-018-9492-x
    [33]
    VERA-SANTANDER V E, HERNÁNDEZ-FIGUEROA R H, JIMÉNEZ-MUNGUÍA M T, et al. Health benefits of consuming foods with bacterial probiotics, postbiotics, and their metabolites:A review[J]. Molecules,2023,28(3):1230−1257. doi: 10.3390/molecules28031230
    [34]
    ZUCKO J, STARCEVIC A, DIMINIC J, et al. Probiotic-friend or foe?[J]. Current Opinion in Food Science,2020,32:45−49. doi: 10.1016/j.cofs.2020.01.007
    [35]
    WILLIAMS N T. Probiotics[J]. American Journal of Health-System Pharmacy,2010,67(6):449−458. doi: 10.2146/ajhp090168
    [36]
    SHI L H, BALAKRISHNAN K, THIAGARAJAH K, et al. Beneficial properties of probiotics[J]. Tropical Life Sciences Research,2016,27(2):73−90. doi: 10.21315/tlsr2016.27.2.6
    [37]
    HOLZAPFEL W H, WOOD B J. Lactic acid bacteria:biodiversity and taxonomy[M]. New York:John Wiley & Sons, 2014.
    [38]
    ROE A L, BOYTE M E, ELKINS C A, et al. Considerations for determining safety of probiotics:A USP perspective[J]. Regulatory Toxicology and Pharmacology,2022,136:105266. doi: 10.1016/j.yrtph.2022.105266
    [39]
    WU Y, YE Z, FENG P Y, et al. Limosilactobacillus fermentum JL-3 isolated from ''Jiangshui'' ameliorates hyperuricemia by degrading uric acid[J]. Gut Microbes,2021,13(1):1897211. doi: 10.1080/19490976.2021.1897211
    [40]
    NI C X, LI X, WANG L L, et al. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism[J]. Food & Function,2021,12(15):7054−7067.
    [41]
    FENG T, WANG J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic:A systematic review[J]. Gut Microbes,2020,12(1):1801944. doi: 10.1080/19490976.2020.1801944
    [42]
    LIN J X, XIONG T, PENG Z, et al. Novel lactic acid bacteria with anti-hyperuricemia ability:screening and in vitro probiotic characteristics[J]. Food Bioscience,2022,49:101840. doi: 10.1016/j.fbio.2022.101840
    [43]
    RODRÍGUEZ J M, GARRANZO M, SEGURA J, et al. A randomized pilot trial assessing the reduction of gout episodes in hyperuricemic patients by oral administration of Ligilactobacillus salivarius CECT 30632, a strain with the ability to degrade purines[J]. Frontiers in Microbiology,2023,14:1111652. doi: 10.3389/fmicb.2023.1111652
    [44]
    王婷婷. 双歧杆菌四联活菌辅助治疗对高尿酸血症的临床效果分析[J]. 医学食疗与健康,2021,19(3):95−96,98. [WANG T T. Clinical effect analysis of adjuvant therapy of bifidobacterium quadruple bacteria in hyperuricemia[J]. Medical Diet and Health,2021,19(3):95−96,98.]

    WANG T T. Clinical effect analysis of adjuvant therapy of bifidobacterium quadruple bacteria in hyperuricemia[J]. Medical Diet and Health, 2021, 19(3): 95−96,98.
    [45]
    KURAJOH M, MORIWAKI Y, KOYAMA H, et al. Yogurt containing Lactobacillus gasseri PA-3 alleviates increases in serum uric acid concentration induced by purine ingestion:A randomized, double-blind, placebo-controlled study[J]. Gout and Nucleic Acid Metabolism,2018,42(1):31−40. doi: 10.6032/gnam.42.31
    [46]
    ZHAO S, FENG P Y, HU X G, et al. Probiotic Limosilactobacillus fermentum GR-3 ameliorates human hyperuricemia via degrading and promoting excretion of uric acid[J]. Iscience,2022,25(10):105198. doi: 10.1016/j.isci.2022.105198
    [47]
    WANG J, CHEN Y, ZHONG H, et al. The gut microbiota as a target to control hyperuricemia pathogenesis:potential mechanisms and therapeutic strategies[J]. Critical Reviews in Food Science and Nutrition,2022,62(14):3979−3989. doi: 10.1080/10408398.2021.1874287
    [48]
    HU Y H, XIE Y, SU Q T, et al. Probiotic and safety evaluation of twelve lactic acid bacteria as future probiotics[J]. Foodborne Pathogens and Disease,2023,20(11):521−530. doi: 10.1089/fpd.2023.0039
    [49]
    MAFRA D, LOBO J C, BARROS A F, et al. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease[J]. Future Microbiology,2014,9(3):399−410. doi: 10.2217/fmb.13.165
    [50]
    REN Z H, GUO C Y, YU S M, et al. Progress in mycotoxins affecting intestinal mucosal barrier function[J]. International Journal of Molecular Sciences,2019,20(11):2777. doi: 10.3390/ijms20112777
    [51]
    XU D X, LÜ Q L, WANG X F, et al. Hyperuricemia is associated with impaired intestinal permeability in mice[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2019,317(4):G484−G492. doi: 10.1152/ajpgi.00151.2019
    [52]
    SHENG S F, CHEN J F, ZHANG Y H, et al. Structural and functional alterations of gut microbiota in males with hyperuricemia and high levels of liver enzymes[J]. Frontiers in Medicine,2021,8:779994. doi: 10.3389/fmed.2021.779994
    [53]
    LIU X, LÜ Q L, REN H Y, et al. The altered gut microbiota of high-purine-induced hyperuricemia rats and its correlation with hyperuricemia[J]. Peer J,2020,8:e8664. doi: 10.7717/peerj.8664
    [54]
    GUO Z, ZHANG J C, WANG Z L, et al. Intestinal microbiota distinguish gout patients from healthy humans[J]. Scientific Reports,2016,6(1):20602. doi: 10.1038/srep20602
    [55]
    HAN J J, WANG Z Y, LU C Y, et al. The gut microbiota mediates the protective effects of anserine supplementation on hyperuricaemia and associated renal inflammation[J]. Food & Function,2021,12(19):9030−9042.
    [56]
    HE S H, XIONG Q Q, TIAN C, et al. Inulin-type prebiotics reduce serum uric acid levels via gut microbiota modulation:A randomized, controlled crossover trial in peritoneal dialysis patients[J]. European Journal of Nutrition,2022(61):665−677.
    [57]
    LI Y J, ZHU J, LIN G D, et al. Probiotic effects of Lacticaseibacillus rhamnosus 1155 and Limosilactobacillus fermentum 2644 on hyperuricemic rats[J]. Frontiers in Nutrition,2022,9:993951. doi: 10.3389/fnut.2022.993951
    [58]
    WANG H N, LU M, DENG Y, et al. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis[J]. Nutrition,2019,62:63−73. doi: 10.1016/j.nut.2018.11.018
    [59]
    CAO J Y, WANG T, LIU Y S, et al. Lactobacillus fermentum F40-4 ameliorates hyperuricemia by modulating the gut microbiota and alleviating inflammation in mice[J]. Food & Function,2023,14(7):3259−3268.
    [60]
    CHIEN C Y, CHIEN Y J, LIN Y H, et al. Supplementation of Lactobacillus plantarum (TCI227) prevented potassium-oxonate-induced hyperuricemia in rats[J]. Nutrients,2022,14(22):4832. doi: 10.3390/nu14224832
    [61]
    LEE Y, WERLINGER P, SUH J W, et al. Potential probiotic Lacticaseibacillus paracasei MJM60396 prevents hyperuricemia in a multiple way by absorbing purine, suppressing xanthine oxidase and regulating urate excretion in mice[J]. Microorganisms,2022,10(5):851. doi: 10.3390/microorganisms10050851
    [62]
    WANG Z H, SONG L P, LI X P, et al. Lactiplantibacillus pentosus P2020 protects the hyperuricemia and renal inflammation in mice[J]. Frontiers in Nutrition,2023,10:1094483. doi: 10.3389/fnut.2023.1094483
    [63]
    YAMASAKI M, KIUE Y, FUJII K, et al. Vaccinium virgatum aiton leaves extract suppressed lipid accumulation and uric acid production in 3T3-L1 adipocytes[J]. Plants,2021,10(12):2638. doi: 10.3390/plants10122638
    [64]
    LU Y J, SUN Q K, GUAN Q F, et al. The XOR-IDH3α axis controls macrophage polarization in hepatocellular carcinoma[J]. Journal of Hepatology,2023,79(5):1172−1184. doi: 10.1016/j.jhep.2023.06.022
    [65]
    CHEN C Y, LÜ J M, YAO Q Z. Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors:An overview[J]. Medical Science Monitor:International Medical Journal of Experimental and Clinical Research,2016,22:2501−2512.
    [66]
    牛春华, 肖茹雪, 赵子健, 等. 植物乳杆菌 UA149 的降尿酸作用[J]. 现代食品科技,2020,36(2):1−6. [NIU C H, XIAO R X, ZHAO Z J, et al. Serum uric acid lowering effect of Lactobacillus plantarum UA149 on hyperuricemic rats[J]. Modern Food Science and Technology,2020,36(2):1−6.]

    NIU C H, XIAO R X, ZHAO Z J, et al. Serum uric acid lowering effect of Lactobacillus plantarum UA149 on hyperuricemic rats[J]. Modern Food Science and Technology, 2020, 36(2): 1−6.
    [67]
    CAO J Y, BU Y S, HAO H N, et al. Effect and potential mechanism of Lactobacillus plantarum Q7 on hyperuricemia in vitro and in vivo[J]. Frontiers in Nutrition,2022,9:954545. doi: 10.3389/fnut.2022.954545
    [68]
    CAO J Y, LIU Q Q, HAO H N, et al. Lactobacillus paracasei X11 ameliorates hyperuricemia and modulates gut microbiota in mice[J]. Frontiers in Immunology,2022,13:940228. doi: 10.3389/fimmu.2022.940228
    [69]
    LEE Y, KIM N, WERLINGER P, et al. Probiotic characterization of Lactobacillus brevis MJM60390 and in vivo assessment of its antihyperuricemic activity[J]. Journal of Medicinal Food,2022,25(4):367−380. doi: 10.1089/jmf.2021.K.0171
    [70]
    TIN A, MARTEN J, HALPERIN K V L, et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels[J]. Nature Genetics,2019,51(10):1459−1474. doi: 10.1038/s41588-019-0504-x
    [71]
    NAKAYAMA A, NAKAOKA H, YAMAMOTO K, et al. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes[J]. Annals of the Rheumatic Diseases,2017,76(5):869−877. doi: 10.1136/annrheumdis-2016-209632
    [72]
    NARANG R K, VINCENT Z, PHIPPS-GREEN A, et al. Population-specific factors associated with fractional excretion of uric acid[J]. Arthritis Research & Therapy,2019,21(1):1−9.
    [73]
    TAKADA T, ICHIDA K, MATSUO H, et al. ABCG2 dysfunction increases serum uric acid by decreased intestinal urate excretion[J]. Nucleosides, Nucleotides and Nucleic Acids,2014,33(4−6):275−281. doi: 10.1080/15257770.2013.854902
    [74]
    LI L J, ZHANG Y P, ZENG C C. Update on the epidemiology, genetics, and therapeutic options of hyperuricemia[J]. American Journal of Translational Research,2020,12(7):3167−3181.
    [75]
    GE H Z, JIANG Z T, LI B, et al. Dendrobium officinalis six nostrum promotes intestinal urate underexcretion via regulations of urate transporter proteins in hyperuricemic rats[J]. Combinatorial Chemistry & High Throughput Screening,2023,26(4):848−861.
    [76]
    OHASHI Y, TOYODA M, SAITO N, et al. Evaluation of ABCG2-mediated extra-renal urate excretion in hemodialysis patients[J]. Scientific Reports,2023,13(1):93. doi: 10.1038/s41598-022-26519-x
    [77]
    ICHIDA K. Recent progress and prospects for research on urate efflux transporter ABCG2[J]. Nihon rinsho Japanese Journal of Clinical Medicine,2014,72(4):757−765.
    [78]
    YIN H, LIU N, CHEN J. The role of the intestine in the development of hyperuricemia[J]. Frontiers in Immunology,2022,13:845684. doi: 10.3389/fimmu.2022.845684
    [79]
    ZHAO H Y, CHEN X Y, MENG F Q, et al. Ameliorative effect of Lacticaseibacillus rhamnosus Fmb14 from Chinese yogurt on hyperuricemia[J]. Food Science and Human Wellness,2023,12(4):1379−1390. doi: 10.1016/j.fshw.2022.10.031
    [80]
    LU L H, LIU T T, LIU X L, et al. Screening and identification of purine degrading Lactobacillus fermentum 9-4 from Chinese fermented rice-flour noodles[J]. Food Science and Human Wellness,2022,11(5):1402−1408. doi: 10.1016/j.fshw.2022.04.030
    [81]
    金方, 杨虹. 降血尿酸益生菌株的筛选和降血尿酸机理的探索[J]. 微生物学通报,2018,45(8):1757−1769. [JIN F, YANG H. Isolation of hypouricemic probiotics and exploration their effects on hyperuricemic rats[J]. Microbiology China,2018,45(8):1757−1769.]

    JIN F, YANG H. Isolation of hypouricemic probiotics and exploration their effects on hyperuricemic rats[J]. Microbiology China, 2018, 45(8): 1757−1769.
    [82]
    YAMADA N, SAITO-IWAMOTO C, NAKAMURA M, et al. Lactobacillus gasseri PA-3 uses the purines IMP, inosine and hypoxanthine and reduces their absorption in rats[J]. Microorganisms,2017,5(1):10. doi: 10.3390/microorganisms5010010
    [83]
    KUO Y W, HSIEH S H, CHEN J F, et al. Lactobacillus reuteri TSR332 and Lactobacillus fermentum TSF331 stabilize serum uric acid levels and prevent hyperuricemia in rats[J]. Peer J,2021,9:e11209. doi: 10.7717/peerj.11209
    [84]
    ZHU J, LI Y J, CHEN Z G, et al. Screening of lactic acid bacteria strains with urate‐lowering effect from fermented dairy products[J]. Journal of Food Science,2022,87(11):5118−5127. doi: 10.1111/1750-3841.16351
    [85]
    MENG Y P, HU Y S, WEI M, et al. Amelioration of hyperuricemia by Lactobacillus acidophilus F02 with uric acid-lowering ability via modulation of NLRP3 inflammasome and gut microbiota homeostasis[J]. Journal of Functional Foods,2023,111:105903. doi: 10.1016/j.jff.2023.105903
    [86]
    LI M F, WU X L, GUO Z W, et al. Lactiplantibacillus plantarum enables blood urate control in mice through degradation of nucleosides in gastrointestinal tract[J]. Microbiome,2023,11(1):153. doi: 10.1186/s40168-023-01605-y
    [87]
    张沙沙, 窦清泉, 邹积宏. 降尿酸乳酸菌的筛选及其对高尿酸血症小鼠的影响[J]. 生物技术,2022,32(1):48−54,28. [ZHANG S S, DOU Q Q, ZOU J H. Screening of uric acid-lowering lactic acid bacteria and its effect on mice with hyperuricemia[J]. Biotechnology,2022,32(1):48−54,28.]

    ZHANG S S, DOU Q Q, ZOU J H. Screening of uric acid-lowering lactic acid bacteria and its effect on mice with hyperuricemia[J]. Biotechnology, 2022, 32(1): 48−54,28.
    [88]
    LIANG L Z, MENG Z H, ZHANG F, et al. Lactobacillus gasseri LG08 and Leuconostoc mesenteroides LM58 exert preventive effect on the development of hyperuricemia by repairing antioxidant system and intestinal flora balance[J]. Frontiers in Microbiology,2023,14:1211831. doi: 10.3389/fmicb.2023.1211831
    [89]
    SUN Y M, XU D M, ZHANG G M, et al. Wild-type Escherichia coli Nissle 1917 improves hyperuricemia by anaerobically degrading uric acid and maintaining gut microbiota profile of mice[J]. Journal of Functional Foods,2024,112:105935. doi: 10.1016/j.jff.2023.105935
    [90]
    SHI R J, YE J, FAN H, et al. Lactobacillus plantarum LLY-606 supplementation ameliorates hyperuricemia via modulating intestinal homeostasis and relieving inflammation[J]. Food & Function,2023,14(12):5663−5677.
    [91]
    XU J, TU M L, FAN X K, et al. A novel strain of Levilactobacillus brevis PDD-5 isolated from salty vegetables has beneficial effects on hyperuricemia through anti-inflammation and improvement of kidney damage[J]. Food Science and Human Wellness,2024,13(2):898−908. doi: 10.26599/FSHW.2022.9250077
    [92]
    LIU X, HAN C H, MAO T, et al. Commensal Enterococcus faecalis W5 ameliorates hyperuricemia and maintains the epithelium barrier in a hyperuricemia mouse model[J]. Journal of Digestive Diseases,2023,25(1):44−60.
    [93]
    ZHANG L H, LIU J X, JIN T, et al. Live and pasteurized Akkermansia muciniphila attenuate hyperuricemia in mice through modulating uric acid metabolism, inflammation, and gut microbiota[J]. Food & Function,2022,13(23):12412−12425.
    [94]
    ZOU Y, RO K S, JIANG C T, et al. The anti-hyperuricemic and gut microbiota regulatory effects of a novel purine assimilatory strain, Lactiplantibacillus plantarum X7022[J]. European Journal of Nutrition, 2023, 63(3): 697-711.
    [95]
    RO K S, ZHAO L, HU Y T, et al. Anti-hyperuricemic properties and mechanism of Lactiplantibacillus plantarum X7023[J]. Process Biochemistry,2024,136:26−37. doi: 10.1016/j.procbio.2023.11.008
    [96]
    YIN S, ZHU F Y. Probiotics for constipation in Parkinson's:A systematic review and meta-analysis of randomized controlled trials[J]. Frontiers in Cellular and Infection Microbiology,2022,12:1038928. doi: 10.3389/fcimb.2022.1038928
    [97]
    DE ALBERTI D, RUSSO R, TERRUZZI F, et al. Lactobacilli vaginal colonisation after oral consumption of Respecta® complex:A randomised controlled pilot study[J]. Archives of Gynecology and Obstetrics,2015,292(2):861−867.
    [98]
    GOLDENBERG J Z, YAP C, LYTVYN L, et al. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children[J]. Cochrane Database of Systematic Reviews,2017,12(12):CD006095.
    [99]
    GUO Q, GOLDENBERG J Z, HUMPHREY C, et al. Probiotics for the prevention of pediatric antibiotic-associated diarrhea[J]. Cochrane Database of Systematic Reviews,2019,4(4):CD004827.
    [100]
    SANDERS M E, AKKERMANS L M, HALLER D, et al. Safety assessment of probiotics for human use[J]. Gut microbes,2010,1(3):164−185. doi: 10.4161/gmic.1.3.12127
    [101]
    NOBRE L, FERNANDES C, FLORÊNCIO K, et al. Could paraprobiotics be a safer alternative to probiotics for managing cancer chemotherapy-induced gastrointestinal toxicities?[J]. Brazilian Journal of Medical and Biological Research,2023,55(1):e12522.
    [102]
    DEVI S M, ARCHER A C, HALAMI P M. Screening, characterization and in vitro evaluation of probiotic properties among lactic acid bacteria through comparative analysis[J]. Probiotics and Antimicrobial Proteins,2015,7(3):181−192. doi: 10.1007/s12602-015-9195-5
    [103]
    KHALESI S, BELLISSIMO N, VANDELANOTTE C, et al. A review of probiotic supplementation in healthy adults:helpful or hype?[J]. European Journal of Clinical Nutrition,2019,73(1):24−37. doi: 10.1038/s41430-018-0135-9
    [104]
    ZHANG B, WANG Y P, TAN Z F, et al. Screening of probiotic activities of Lactobacilli strains isolated from traditional Tibetan Qula, a raw yak milk cheese[J]. Asian-Australas Journal of Animal Sciences,2016,29(10):1490−1499. doi: 10.5713/ajas.15.0849
    [105]
    江一帆, 滕建文, 黄丽, 等. 具有降解胆固醇益生活性和后生元特性的乳酸菌菌株筛选[J]. 食品科技,2023,48(9):9−16. [JIANG Y F, TENG J W, HUANG L, et al. Screening of lactic acid bacteria strains with cholesterol-degrading probiotic and postbiotic properties[J]. Food Science and Technology,2023,48(9):9−16.]

    JIANG Y F, TENG J W, HUANG L, et al. Screening of lactic acid bacteria strains with cholesterol-degrading probiotic and postbiotic properties[J]. Food Science and Technology, 2023, 48(9): 9−16.
    [106]
    ISMAEL M, GU Y, CUI Y, et al. Lactic acid bacteria isolated from Chinese traditional fermented milk as novel probiotic strains and their potential therapeutic applications[J]. 3 Biotech,2022,12(12):337. doi: 10.1007/s13205-022-03403-z
    [107]
    LI M, YANG D B, LU M, et al. Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from Chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats[J]. PLoS One,2014,9(9):e105577. doi: 10.1371/journal.pone.0105577
    [108]
    GABA K, ANAND S. Incorporation of probiotics and other functional ingredients in dairy fat-rich products:Benefits, challenges, and opportunities[J]. Dairy,2023,4(4):630−649. doi: 10.3390/dairy4040044
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (282) PDF downloads (34) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return