PENG Yuanhuai, WANG Rui, WANG Fengni, et al. Investigation the Effects and Mechanisms of Autolytic Active Peptides from Shrimp Head on Anti-fatigue in Mice Based on the Keap1/Nrf2/ARE Signaling Pathway[J]. Science and Technology of Food Industry, 2025, 46(5): 364−370. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050010.
Citation: PENG Yuanhuai, WANG Rui, WANG Fengni, et al. Investigation the Effects and Mechanisms of Autolytic Active Peptides from Shrimp Head on Anti-fatigue in Mice Based on the Keap1/Nrf2/ARE Signaling Pathway[J]. Science and Technology of Food Industry, 2025, 46(5): 364−370. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050010.

Investigation the Effects and Mechanisms of Autolytic Active Peptides from Shrimp Head on Anti-fatigue in Mice Based on the Keap1/Nrf2/ARE Signaling Pathway

More Information
  • Received Date: May 06, 2024
  • Available Online: December 23, 2024
  • To investigate the influence of shrimp head autolytic active peptides (SAP) on the anti-fatigue ability of mice, low, middle, and high doses of SAP were administered orally to mice for 28 d. Subsequently, load-bearing swimming time, malondialdehyde content in liver tissue, blood lactic acid content, blood urea nitrogen content, lactate dehydrogenase activity, reduced glutathione content, liver/muscle glycogen content, and mRNA expression of Keap1, Nrf2, HO-1, and NQO-1 were measured and the liver tissue morphology of each group of mice was also observed. The results showed that compared with the normal control group (NC), the load-bearing swimming time of mice in each dose group of SAP was significantly prolonged (P<0.05), while the high-dose group of SAP (600 mg/kg·d) exhibited significantly decreased levels of malondialdehyde, blood lactic acid, and blood urea nitrogen (P<0.05), significantly increased levels of lactate dehydrogenase, reduced glutathione, and liver glycogen (P<0.05), significantly upregulated mRNA expression of Nrf2, HO-1, and NQO-1 (P<0.05), and significantly downregulated mRNA expression of Keap1 (P<0.05). The anti-fatigue effect was comparable to that of taurine positive control group (TP). In addition, by observing the tissue morphology of liver slices in each group of mice, each dose group of SAP showed similar morphology to the normal blank group, indicating that short-term continuous intake of appropriate amounts of SAP does could not affect the normal metabolic function of the mice liver and not cause damage to its liver. The results indicated that shrimp head SAP can activate the Keap1/Nrf2/ARE signaling pathway in mice, alleviate oxidative stress, protect cells from damage, and regulate energy metabolism, thus alleviating fatigue symptoms and exhibiting significant anti-fatigue effects.
  • loading
  • [1]
    BHAT Z. Bioactive peptides of animal origin:A review[J]. Journal of Food Science and Technology,2015,57(3):566−578.
    [2]
    LIU R, LI Z, YU X C, et al. The effects of peanut oligopeptides on exercise-induced fatigue in mice and its underlying mechanism[J]. Nutrients,2023,15:1743. doi: 10.3390/nu15071743
    [3]
    FENG L, YUE W, JIAN Y, et al. Overview of the preparation method, structure and function, and application of natural peptides and polypeptides[J]. Biomedicine & Pharmacotherapy,2022(153):113493.
    [4]
    左爱华, 马普, 刘心田, 等. 海参低聚肽对肾阳虚小鼠的影响[J]. 海洋湖沼通报,2021(1):77−84. [ZUO A H, MA P, LIU X T, et al. Anti-fatigue and aphrodisiac effects of a Postichopus japonicus oligopeptide on mice with kidney-yang deficiency[J]. Transactions of Oceanology and Limnology,2021(1):77−84.]

    ZUO A H, MA P, LIU X T, et al. Anti-fatigue and aphrodisiac effects of a Postichopus japonicus oligopeptide on mice with kidney-yang deficiency[J]. Transactions of Oceanology and Limnology, 2021(1): 77−84.
    [5]
    车帅, 刘楚怡, 王长伟, 等. 一种含有牡蛎肽保健酒的功能评价[J]. 中国酿造,2021,40(5):97−102. [CHE S, LIU C Y, WANG C W, et al. Functional assessment of a novel health care wine containing oyster peptide[J]. China Brewing,2021,40(5):97−102.] doi: 10.11882/j.issn.0254-5071.2021.05.018

    CHE S, LIU C Y, WANG C W, et al. Functional assessment of a novel health care wine containing oyster peptide[J]. China Brewing, 2021, 40(5): 97−102. doi: 10.11882/j.issn.0254-5071.2021.05.018
    [6]
    骆贤亮, 晏永球, 冯凤琴. 牡蛎肽与人参提取物配伍提高雄性小鼠性功能及抗疲劳作用研究[J]. 食品工业科技,2022,43(1):366−374. [LUO X L, YAN Y Q, FENG F Q. Effect of combined oyster peptide and ginseng extracts on improvement of sexual function and anti-fatigue in male mice[J]. Science and Technology of Food Industry,2022,43(1):366−374.]

    LUO X L, YAN Y Q, FENG F Q. Effect of combined oyster peptide and ginseng extracts on improvement of sexual function and anti-fatigue in male mice[J]. Science and Technology of Food Industry, 2022, 43(1): 366−374.
    [7]
    朱国萍, 曹文红, 章超桦, 等. 凡纳滨对虾虾头自溶动力学[J]. 水产学报,2010,34(3):395−403. [ZHU G P, CAO W H, ZHANG C H, et al. Autolysis kinetics of Litopenaeus vannamei head[J]. Journal of Fisheries of China,2010,34(3):395−403.] doi: 10.3724/SP.J.1231.2010.06457

    ZHU G P, CAO W H, ZHANG C H, et al. Autolysis kinetics of Litopenaeus vannamei head[J]. Journal of Fisheries of China, 2010, 34(3): 395−403. doi: 10.3724/SP.J.1231.2010.06457
    [8]
    朱国萍, 章超桦, 曹文红, 等. 超滤分离对虾头自溶产物ACE抑制活性的影响[J]. 上海海洋大学学报,2013,22(3):452−457. [ZHU G P, ZHANG C H, CAO W H, et al. Effect of ultrafiltration on ACE inhibitory activity of autolysate of shrimp head[J]. Journal of Shanghai Ocean University,2013,22(3):452−457.]

    ZHU G P, ZHANG C H, CAO W H, et al. Effect of ultrafiltration on ACE inhibitory activity of autolysate of shrimp head[J]. Journal of Shanghai Ocean University, 2013, 22(3): 452−457.
    [9]
    张风, 夏旭, 周爱梅, 等. 虾头虾壳蛋白质酶解制备抗氧化肽的研究[J]. 南方水产科学,2015,11(6):79−87. [ZHANG F, XIA X, ZHOU A M, et al. Research of antioxidant peptides produced from protein extracted from white shrimp head and shell[J]. South China Fisheries Science,2015,11(6):79−87.] doi: 10.3969/j.issn.2095-0780.2015.06.011

    ZHANG F, XIA X, ZHOU A M, et al. Research of antioxidant peptides produced from protein extracted from white shrimp head and shell[J]. South China Fisheries Science, 2015, 11(6): 79−87. doi: 10.3969/j.issn.2095-0780.2015.06.011
    [10]
    王晋, 张风, 周爱梅, 等. 虾头、虾壳抗氧化肽的分离纯化及其对秀丽隐杆线虫的抗氧化作用[J]. 食品科学,2019,40(3):56−63. [WANG J, ZHANG F, ZHOU A M, et al. Purification of antioxidant peptides derived from enzymatic hydrolysates of shrimp heads and shells and their antioxidant protection in Caenorhabditis elegans[J]. Food Science,2019,40(3):56−63.] doi: 10.7506/spkx1002-6630-20180103-030

    WANG J, ZHANG F, ZHOU A M, et al. Purification of antioxidant peptides derived from enzymatic hydrolysates of shrimp heads and shells and their antioxidant protection in Caenorhabditis elegans[J]. Food Science, 2019, 40(3): 56−63. doi: 10.7506/spkx1002-6630-20180103-030
    [11]
    CAO W, ZHANG C, HONG P, et al. Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis[J]. Food Chemistry,2008,109(1):176−183. doi: 10.1016/j.foodchem.2007.11.080
    [12]
    GUPTA S. Quantifying protein and nitrogen levels in Paramphistomum species[J]. Journal for Research in Applied Sciences and Biotechnology,2023,2(1):278−281. doi: 10.55544/jrasb.2.1.41
    [13]
    姜丽冬, 金鑫, 朴春红, 等. 林蛙油生物活性肽的制备工艺及其抗疲劳研究[J]. 吉林农业大学学报,2016,38(4):482−488. [JIANG L D, JIN X, PIAO C H, et al. Preparation technology and antifatigue effects of oviductus ranae bioactive peptide[J]. Journal of Jilin Agricultural University,2016,38(4):482−488.]

    JIANG L D, JIN X, PIAO C H, et al. Preparation technology and antifatigue effects of oviductus ranae bioactive peptide[J]. Journal of Jilin Agricultural University, 2016, 38(4): 482−488.
    [14]
    陈立艺, 李玉新, 黄倍源, 等. 参附注射液对小鼠抗缺氧抗疲劳作用的实验研究[J]. 中国中医急症,2015,24(6):960−961,978. [CHEN L Y, LI Y X, HUANG B Y, et al. Experimental study on anti-hypoxic and anti-fatigue effect of shenfu injection on mice[J]. Journal of Emergency in Traditional Chinese Medicine,2015,24(6):960−961,978.] doi: 10.3969/j.issn.1004-745X.2015.06.008

    CHEN L Y, LI Y X, HUANG B Y, et al. Experimental study on anti-hypoxic and anti-fatigue effect of shenfu injection on mice[J]. Journal of Emergency in Traditional Chinese Medicine, 2015, 24(6): 960−961,978. doi: 10.3969/j.issn.1004-745X.2015.06.008
    [15]
    CHAMBERLAND V, RIOUX P. Not only students can express alcohol dehydrogenase:Goldfish can too![J]. Advances in Physiology Education,2010,34(4):222−227. doi: 10.1152/advan.00088.2009
    [16]
    RUSDIAWAN A, SHOLIKHAH A M, PRIHATININGSIH S. The changes in pH levels, blood lactic acid and fatigue index to anaerobic exercise on athlete after NaHCO3 administration[J]. Malaysian Journal of Medicine & Health Sciences,2020,16(supp16):50−56.
    [17]
    ZHANG W, XIANG Q, ZHAO J, et al. Purification, structural elucidation and physicochemical properties of a polysaccharide from Abelmoschus esculentus L (okra) flowers[J]. International Journal of Biological Macromolecules,2020,155:740−750. doi: 10.1016/j.ijbiomac.2020.03.235
    [18]
    KUMAR D, SINGH A K. Decoding the mechanism behind exercise-induced fatigue[J]. Neuroquantology,2022,20(15):5187−5124.
    [19]
    FENG T, HUANG Y, TANG Z, et al. Anti-fatigue effects of pea (Pisum sativum L.) peptides prepared by compound protease[J]. Journal of Food Science and Technology,2021,58:2265−2272. doi: 10.1007/s13197-020-04737-3
    [20]
    ZHANG L, MA Q, ZHOU Y. Strawberry leaf extract treatment alleviates cognitive impairment by activating Nrf2/HO-1 signaling in rats with streptozotocin-induced diabetes[J]. Frontiers in Aging Neuroscience,2020,12:201. doi: 10.3389/fnagi.2020.00201
    [21]
    THORPE R T, ATKINSON G, DRUST B, et al. Monitoring fatigue status in elite team-sport athletes:Implications for practice[J]. International Journal of Sports Physiology and Performance,2017,12(S2):S227−S234. doi: 10.1123/ijspp.2016-0434
    [22]
    GWYNETH S, MICHAEL T. The liver and glycogen:In sickness and in health[J]. International Journal of Molecular Sciences,2023,24(7):6133. doi: 10.3390/ijms24076133
    [23]
    TU W, WANG H, LI S, et al. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases[J]. Aging and Disease,2019,10(3):637−651. doi: 10.14336/AD.2018.0513
    [24]
    MENG C L, JI J A, ZHENG Y J, et al. The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target:An update[J]. Medicinal Research Reviews,2016,36(5):924−963. doi: 10.1002/med.21396
    [25]
    SHI C, WANG X, LIU Y, et al. Effect and mechanism of banxia xiexintang on rats with chronic atrophic gastritis based on Keap1/Nrf2/ARE signaling pathway[J]. Chinese Journal of Experimental Traditional Medical Formulae,2021,24:31−37.
    [26]
    徐恺. 南极磷虾肽抗疲劳、耐缺氧以及抗衰老、提高免疫力实验研究[D]. 青岛:中国海洋大学, 2012: 24−39. [XU K. Experimental study of the functions of Antarctic krill peptide on fatigue resistance, anti-hypoxia, anti-aging and immunity[D]. Qingdao:Ocean University of China, 2012: 24−39.]

    XU K. Experimental study of the functions of Antarctic krill peptide on fatigue resistance, anti-hypoxia, anti-aging and immunity[D]. Qingdao: Ocean University of China, 2012: 24−39.
    [27]
    王建永. 牡蛎多肽对运动疲劳大鼠骨骼肌线粒体功能的影响[J]. 安徽大学学报(自然科学版),2020,44(5):93−99. [WANG J Y. Effects of oyster polypeptide on mitochondrial function of skeletal muscle in exercise induced fatigue rats[J]. Journal of Anhui University (Natural Science Edition),2020,44(5):93−99.]

    WANG J Y. Effects of oyster polypeptide on mitochondrial function of skeletal muscle in exercise induced fatigue rats[J]. Journal of Anhui University (Natural Science Edition), 2020, 44(5): 93−99.
    [28]
    ILIANA L, GUINOVART J, DURAN J. Increased liver glycogen levels enhance exercise capacity in mice[J]. Journal of Biological Chemistry,2021,297(2):100976. doi: 10.1016/j.jbc.2021.100976
    [29]
    ØRTENBLAD N, WESTERBLAD H, NIELSEN J. Muscle glycogen stores and fatigue[J]. The Journal of Physiology,2013,591(18):4405−4413. doi: 10.1113/jphysiol.2013.251629
    [30]
    熊款款, 谭磊, 王爱兵, 等. Keap1-Nrf2/ARE信号通路抗氧化机制及抗氧化剂的研究进展[J]. 动物医学进展,2021,42(4):89−94. [XIONG K K, TAN L, WANG A B, et al. Progress on anti-oxidation mechanisms and antioxidants of the Keap1-Nrf2/ARE signaling pathway[J]. Progress in Veterinary Medicine,2021,42(4):89−94.]

    XIONG K K, TAN L, WANG A B, et al. Progress on anti-oxidation mechanisms and antioxidants of the Keap1-Nrf2/ARE signaling pathway[J]. Progress in Veterinary Medicine, 2021, 42(4): 89−94.
    [31]
    MA C, DENG Y, XIAO R, et al. Anti-fatigue effect of phlorizin on exhaustive exercise-induced oxidative injury mediated by Nrf2/ARE signaling pathway in mice[J]. European Journal of Pharmacology,2022,918:174563. doi: 10.1016/j.ejphar.2021.174563
    [32]
    CHEN Y, WANG J, JING Z, et al. Anti-fatigue and anti-oxidant effects of curcumin supplementation in exhaustive swimming mice via Nrf2/Keap1 signal pathway[J]. Current Research in Food Science,2022,5:1148−1157. doi: 10.1016/j.crfs.2022.07.006
    [33]
    SECHANG O, WARABI E, YAMAMOTO M, et al. Nrf2 activation remarkably improves exercise endurance capacity in mice[J]. Free Radical Biology and Medicine,2012,53(1):36−37.

Catalog

    Article Metrics

    Article views (51) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return