Citation: | ZHAO Chenhao, LIU Wenhao, LI Bo, et al. Comparison in the Structure and Physicochemical Properties of Soybean Dregs Insoluble Dietary Fiber from Different Sources[J]. Science and Technology of Food Industry, 2025, 46(5): 118−126. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024120086. |
[1] |
QIN W, SUN L, MIAO M, et al. Plant-sourced intrinsic dietary fiber:Physical structure and health function[J]. Trends in Food Science & Technology,2021,118:341−355.
|
[2] |
YE S, SHAH B R, LI J, et al. A critical review on interplay between dietary fibers and gut microbiota[J]. Trends in Food Science & Technology,2022,124:237−249.
|
[3] |
SANTOS D C, OLIVEIRA FILHO J G, SILVA J D, et al. Okara flour:Its physicochemical, microscopical and functional properties[J]. Nutrition Food Science,2019,49(6):1252−1264. doi: 10.1108/NFS-11-2018-0317
|
[4] |
张蒙冉, 李淑英, 高雅鑫, 等. 不同真菌发酵豆渣营养品质与功能特性研究[J]. 中国食品学报,2022,22(8):334−342. [ZHANG M R, LI S Y, GAO Y X, et al. Studies on nutritional quality and functional characteristics of soybean dregs fermented by different fungus[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(8):334−342.]
ZHANG M R, LI S Y, GAO Y X, et al. Studies on nutritional quality and functional characteristics of soybean dregs fermented by different fungus[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(8): 334−342.
|
[5] |
SINGH A, MEENA M, KUMAR D, et al. Structural and functional analysis of various globulin proteins from soy seed[J]. Critical Reviews in Food Science and Nutrition,2015,55(11):1491−1502. doi: 10.1080/10408398.2012.700340
|
[6] |
MATEOS-APARICIO I, REDONDO-CUENCA A, VILLANUEVA-SUAREZ M J, et al. Pea pod, broad bean pod and okara, potential sources of functional compounds[J]. LWT-Food Science and Technology,2010,43(9):1467−1470. doi: 10.1016/j.lwt.2010.05.008
|
[7] |
AMBAWAT S, KHETARPAUL N. Comparative assessment of antioxidant, nutritional and functional properties of soybean and its by-product okara[J]. Annals of Phytomedicine-An International Journal,2018,7(1):112−118.
|
[8] |
ULLAH I, KHODER R M, YIN T, et al. Gelation properties of tofu induced by different coagulants:Effects of molecular interactions between nano-sized okara dietary fiber and soybean proteins[J]. Food Chemistry,2023,403:134056. doi: 10.1016/j.foodchem.2022.134056
|
[9] |
WANG S, SUN W, SWALLAH M S, et al. Preparation and characterization of soybean insoluble dietary fiber and its prebiotic effect on dyslipidemia and hepatic steatosis in high fat-fed C57BL/6J mice[J]. Food Function,2021,12(18):8760−8773. doi: 10.1039/D1FO01050F
|
[10] |
LYU B, WANG H, SWALLAH M S, et al. Structure, properties and potential bioactivities of high-purity insoluble fibre from soybean dregs (Okara)[J]. Food Chemistry,2021,364:130402. doi: 10.1016/j.foodchem.2021.130402
|
[11] |
TERAMOTO Y, LEE S, ENDO T. Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking[J]. Bioresource Technology,2008,99:8856−8863. doi: 10.1016/j.biortech.2008.04.049
|
[12] |
MA M, MU T. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin[J]. Food Chemistry,2016,194:237−246. doi: 10.1016/j.foodchem.2015.07.095
|
[13] |
DONG W, WANG D, HU R, et al. Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods[J]. Food Research International,2020,136:109497. doi: 10.1016/j.foodres.2020.109497
|
[14] |
QIAO C C, ZENG F K, WU N N, et al. Functional, physicochemical and structural properties of soluble dietary fiber from rice bran with extrusion cooking treatment[J]. Food Hydrocolloids,2021,121:107057. doi: 10.1016/j.foodhyd.2021.107057
|
[15] |
GOUW V P, JUNG J, ZHAO Y. Functional properties, bioactive compounds, and in vitro gastrointestinal digestion study of dried fruit pomace powders as functional food ingredients[J]. LWT-Food Science and Technology,2017,80:136−144. doi: 10.1016/j.lwt.2017.02.015
|
[16] |
CHAU C F, WANG Y T, WEN Y L. Different micronization methods significantly improve the functionality of carrot insoluble fibre[J]. Food Chemistry,2007,100(4):1402−1408. doi: 10.1016/j.foodchem.2005.11.034
|
[17] |
YANG T, YAN H L, TANG C H. Wet media planetary ball milling remarkably improves functional and cholesterol-binding properties of okara[J]. Food Hydrocolloids,2021,111:106386. doi: 10.1016/j.foodhyd.2020.106386
|
[18] |
QIAO H, SHAO H, ZHENG X, et al. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion[J]. Food Chemistry,2021,335:127522. doi: 10.1016/j.foodchem.2020.127522
|
[19] |
胡巍, 杨帆, 熊子奕, 等. 不同脱脂方法对高脂肪型复杂食物基质中牛乳过敏原检测的影响[J]. 食品科学技术学报,2023,41(6):115−126. [HU W, YANG F, XIONG Z Y, et al. Effects of different degreasing methods on cow’s milk allergens detection in high-fat complex food matrix[J]. Journal of Food Science and Technology,2023,41(6):115−126.]
HU W, YANG F, XIONG Z Y, et al. Effects of different degreasing methods on cow’s milk allergens detection in high-fat complex food matrix[J]. Journal of Food Science and Technology, 2023, 41(6): 115−126.
|
[20] |
宁伟伟, 陶宁萍, 荣旭, 等. 响应面法优化奇亚籽饼脱脂工艺研究[J]. 中国油脂,2016,41(7):20−23. [NING W W, TAO N P, RONG X, et al. Optimization of defatting of chia (Salvia hispanica) seed cake by response surface methodology[J]. China Oils and Fats,2016,41(7):20−23.] doi: 10.3969/j.issn.1003-7969.2016.07.005
NING W W, TAO N P, RONG X, et al. Optimization of defatting of chia (Salvia hispanica) seed cake by response surface methodology[J]. China Oils and Fats, 2016, 41(7): 20−23. doi: 10.3969/j.issn.1003-7969.2016.07.005
|
[21] |
KARAMAN E, YILMAZ E, TUNCEL N B. Physicochemical, microstructural and functional characterization of dietary fibers extracted from lemon, orange and grapefruit seeds press meals[J]. Bioactive Carbohydrates and Dietary Fibre,2017,11:9−17. doi: 10.1016/j.bcdf.2017.06.001
|
[22] |
ELLEUCH M, BEDIGIAN D, ROISEUX O, et al. Dietary fibre and fibre-rich by-products of food processing:Characterisation, technological functionality and commercial applications:A review[J]. Food Chemistry,2010,124(2):411−421.
|
[23] |
CHEN H, XIONG M, BAI T, et al. Comparative study on the structure, physicochemical, and functional properties of dietary fiber extracts from quinoa and wheat[J]. LWT-Food Science and Technology,2021,149:111816. doi: 10.1016/j.lwt.2021.111816
|
[24] |
WU W, HU J, GAO H, et al. The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics[J]. Food Chemistry,2020,332:127372. doi: 10.1016/j.foodchem.2020.127372
|
[25] |
QI J, YOKOYAMA W, MAJEED H, et al. Structural and physicochemical properties of insoluble rice bran fiber:Effect of acid-base induced modifications[J]. RSC Advances,2015,5:79915−79923. doi: 10.1039/C5RA15408A
|
[26] |
SCHMITT C, SANCHEZ C, DESOBRY-BANON S, et al. Structure and technofunctional properties of protein-polysaccharide complexes:A review[J]. Critical Reviews in Food Technology,1998,38(8):689−753. doi: 10.1080/10408699891274354
|
[27] |
ULLAH I, YIN T, XIONG S, et al. Effects of thermal pre-treatment on physicochemical properties of nano-sized okara (soybean residue) insoluble dietary fiber prepared by wet media milling[J]. Journal of Food Engineering,2018,237:18−26. doi: 10.1016/j.jfoodeng.2018.05.017
|
[28] |
YU C, TAN H. Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction[J]. Enzyme & Microbial Technology,2005,36(2-3):314−317.
|
[29] |
YE F, TAO B, LIU J, et al. Effect of micronization on the physicochemical properties of insoluble dietary fiber from citrus (Citrus junos Sieb. ex Tanaka) pomace[J]. Food Science and Technology International,2016,22(3):246−255. doi: 10.1177/1082013215593394
|
[30] |
CHEN H, ZHAO C, JIE L, et al. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root[J]. LWT-Food Science and Technology,2018,93:203−211.
|
[31] |
YAN X, YE R, CHEN Y. Blasting extrusion processing:The increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran[J]. Food Chemistry,2015,180:106−115. doi: 10.1016/j.foodchem.2015.01.127
|
[32] |
KAUSHIK A, SINGH M. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization[J]. Carbohydrate Research,2011,346(1):76−85. doi: 10.1016/j.carres.2010.10.020
|
[33] |
ALBA K, MACNAUGHTAN W, LAWS A P, et al. Fractionation and characterisation of dietary fibre from blackcurrant pomace[J]. Food Hydrocolloids,2018,81:398−408. doi: 10.1016/j.foodhyd.2018.03.023
|
[34] |
OUYANG H, GUO B, HU Y, et al. Effect of ultra-high pressure treatment on structural and functional properties of dietary fiber from pomelo fruitlets[J]. Food Bioscience,2023,52:102436. doi: 10.1016/j.fbio.2023.102436
|
[35] |
LOPEZ G, ROS G, RINCON F, et al. Relationship between physical and hydration properties of soluble and insoluble fiber of artichoke[J]. Journal of Agricultural & Food Chemistry,1996,44(9):2773−2778.
|
[36] |
PEERAJIT P, CHIEWCHAN N, DEVAHASTIN S. Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues[J]. Food Chemistry,2012,132(4):1891−1898. doi: 10.1016/j.foodchem.2011.12.022
|
[37] |
BENITEZ V, MOLLA E, MARTIN-CABREJAS M A, et al. Physicochemical properties and in vitro antidiabetic potential of fibre concentrates from onion by-products[J]. Journal of Functional Foods,2017,36:34−42. doi: 10.1016/j.jff.2017.06.045
|
[38] |
ZHANG N, HUANG C, OU S. In vitro binding capacities of three dietary fibers and their mixture for four toxic elements, cholesterol, and bile acid[J]. Journal of Hazardous Materials,2011,186(1):236−239. doi: 10.1016/j.jhazmat.2010.10.120
|
[39] |
PALLAGI-KUNSTAR É, FARKAS K, MALETH J, et al. Bile acids inhibit Na+/H+ exchanger and Cl−/HCO3− exchanger activities via cellular energy breakdown and Ca2+ overload in human colonic crypts[J]. Pflügers Archiv-European Journal of Physiology,2015,467:1277−1290.
|
[40] |
MAEKYNEN K, JITSAARDKUL S, TACHASAMRAN P, et al. Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp (Citrus grandis L. Osbeck) in Thailand[J]. Food Chemistry,2013,139(1-4):735−743. doi: 10.1016/j.foodchem.2013.02.017
|